
Franca User Guide

Release 0.12.0.1

Copyright c© 2013-2018 itemis AG

www.itemis.de

This document and the accompanying software/materials are made available under the
terms of the Eclipse Public License v1.0 which accompanies this distribution, and is avail-
able at http://www.eclipse.org/legal/epl-v10.html.

The information contained herein is subject to change without notice and is not warranted
to be error-free. If you find any errors, please report them to us in writing.

This software is developed for general use in a variety of information management appli-
cations. It is not developed or intended for use in any inherently dangerous applications,
including applications which may create a risk of personal injury. If you use this software
in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure the safe use of this software. itemis
AG disclaims any liability for any damages caused by use of this software in dangerous
applications.

http://www.itemis.de
http://www.eclipse.org/legal/epl-v10.html

Contents

I Part One

1 Introduction . 11

1.1 Franca framework architecture 11

1.2 Franca IDL 12

1.3 Franca Tooling 13

2 Getting Started . 15

2.1 Install Eclipse-based Franca tooling 15

2.2 Import example project 15

2.3 Contents of example project 16

2.4 Create new Franca interface 16

2.5 Develop your own code generator 16

3 Franca Concepts . 17

3.1 Franca Core Model and IDL 17

3.1.1 Franca Core Model . 17

3.1.2 Franca IDL Model . 17

3.1.3 Franca Core Eclipse Plugins . 17

3.2 Franca Transformation Framework 18

3.3 Franca Generator Framework 19

3.4 Franca Deployment Models 19

3.5 Guidelines for adding new features to Franca IDL 19

4 Franca Tools User’s Guide . 21

4.1 Franca IDL Editor 21

4.2 Franca Contract Viewer 22

4.2.1 Contract Viewer in Franca 0.10.0 and later . 22

4.2.2 Contract Viewer in Franca 0.9.1 and earlier . 23

4.3 Franca IDL HTML Generator 24

II Part Two

5 Franca IDL Reference . 27

5.1 Data types 27

5.1.1 Primitive types . 27

5.1.2 Integer with optional range . 29

5.1.3 Arrays . 29

5.1.4 Enumerations . 30

5.1.5 Structures . 31

5.1.6 Unions (aka variants) . 32

5.1.7 Maps (aka dictionaries) . 33

5.1.8 Type definitions (aka aliases) . 33

5.2 Constant definitions 33

5.2.1 Primitive constants . 34

5.2.2 Complex constants . 34

5.3 Expressions 35

5.3.1 Type system . 35

5.3.2 Constant values . 36

5.3.3 Comparison operators . 36

5.3.4 Arithmetic operations . 36

5.3.5 Boolean operations . 36

5.4 TypeCollection definition 36

5.5 Interface definition 37

5.5.1 Basic interface definition . 37

5.5.2 Attributes . 38

5.5.3 Methods . 40

5.5.4 Broadcasts . 44

5.5.5 Interfaces managing interfaces . 45

5.6 Contracts 45

5.6.1 Basic concept of contracts . 45

5.6.2 Protocol state machines . 46

5.6.3 Transition actions . 46

5.6.4 State variables . 47

5.6.5 Exploiting contract information . 47

5.7 Comments 48

5.7.1 Unstructured comments . 48

5.7.2 Structured comments . 48

5.8 Fully qualified names, packages, and multiple files 48

5.8.1 Fully qualified names . 48

5.8.2 Package declarations . 48

5.8.3 Imports and namespace resolution . 50

6 Franca Deployment Models . 51

6.1 Deployment model concepts 52

6.1.1 Deployment specifications and definitions . 52

6.1.2 Deployment properties . 53

6.1.3 Providers and interface instances . 57

6.2 Deployment specifications 57

6.2.1 Introductory example . 57

6.2.2 Deployment specification for interfaces . 58

6.2.3 Providers and interface instances . 59

6.2.4 Specification Inheritance . 59

6.2.5 The property datatype ’Interface’ . 59

6.2.6 Property naming restrictions . 60

6.3 Deployment definitions 61

6.3.1 Interface deployment . 61

6.3.2 Deployment of interface providers . 62

6.3.3 Overwriting deployment properties . 62

6.4 Support for accessing deployment properties 66

6.4.1 PropertyAccessor classes . 66

6.4.2 PropertyAccessor example . 66

6.4.3 Creating InterfacePropertyAccessors . 67

6.4.4 ProviderPropertyAccessors . 67

6.4.5 Example project . 68

III Part Three

7 Franca connectors . 71

7.1 Franca support for D-Bus Introspection 71

7.2 Franca support for OMG IDL 71

7.3 Franca support for Google Protobuf 71

IV Part Four

8 Franca Model API . 75

8.1 How can Franca models be accessed programmatically? 75

8.2 Franca Model API Reference 75

8.2.1 General remarks . 75

8.2.2 FrancaFactory and FrancaPackage . 75

8.3 Utility classes for Franca model access 76

8.3.1 Evaluating FExpression objects with the ExpressionEvaluator . 76

8.3.2 Converting integer types with the IntegerTypeConverter . 76

8.4 API for Franca models, interfaces and type collections 76

8.4.1 Class FModel . 77

8.4.2 Class FTypeCollection . 77

8.4.3 Class FInterface . 77

8.4.4 Class FBroadcast . 78

8.4.5 Class FArgument . 78

8.4.6 Class FMethod . 78

8.4.7 Class FAttribute . 79

8.4.8 Class FVersion . 79

8.4.9 Class Import . 79

8.5 API for Franca types 79

8.5.1 Class FType (abstract) . 80

8.5.2 Class FMapType . 80

8.5.3 Class FTypeRef . 80

8.5.4 Enum FBasicTypeId . 80

8.5.5 Class FEnumerationType . 80

8.5.6 Class FEnumerator . 80

8.5.7 Class FTypeDef . 81

8.5.8 Class FCompoundType (abstract) . 81

8.5.9 Class FUnionType . 81

8.5.10 Class FStructType . 81

8.5.11 Class FField . 82

8.5.12 Class FArrayType . 82

8.6 API for Franca contracts 82

8.6.1 Class FContract . 82

8.6.2 Class FDeclaration . 82

8.6.3 Class FStateGraph . 82

8.6.4 Class FState . 83

8.6.5 Class FTransition . 83

8.6.6 Class FExpression (abstract) . 83

8.6.7 Class FBinaryOperation . 83

8.6.8 Class FConstant (abstract) . 83

8.6.9 Class FStringConstant . 83

8.6.10 Class FBooleanConstant . 84

8.6.11 Class FIntegerConstant . 84

8.6.12 Class FTypedElementRef . 84

8.6.13 Class FTypedElement (abstract) . 84

8.6.14 Class FVariable . 84

8.6.15 Class FAssignment . 84

8.6.16 Class FBlockExpression . 85

8.6.17 Class FGuard . 85

8.6.18 Class FTrigger . 85

8.6.19 Class FEventOnIf . 85

8.7 API for Franca structured comments 85

8.7.1 Class FAnnotationBlock . 85

8.7.2 Class FAnnotation . 85

8.7.3 Enum FAnnotationType . 85

9 Building generators with Franca . 87

9.1 Introduction 87

9.1.1 Basic approach . 87

9.1.2 Which language can be used? . 87

9.1.3 Tool integration . 88

9.1.4 Loading a Franca IDL file . 88

9.2 Traversing Franca models 89

9.2.1 Starting with FModel . 89

9.2.2 Accessing an FInterface . 89

9.2.3 Benefits due to Xtend features . 89

9.2.4 Next steps . 90

9.2.5 Contract section of FInterface . 90

9.3 Accessing Franca deployment models 90

10 Building transformations to/from Franca . 93

10.1 Introduction 93

10.2 Transforming Franca to other models 94

10.2.1 Plain transformations of Franca IDL . 94

10.2.2 Transforming Franca deployment models . 94

10.3 Transforming other models to Franca 94

10.3.1 Plain transformation to Franca IDL . 94

10.3.2 Creating additional deployment models . 95

11 Franca extensions . 97

11.1 Additional validators 97

11.1.1 Adding a validator for Franca IDL . 97

11.1.2 Adding a validator for deployment models . 98

11.2 Providing deployment specifications 99

12 List of External Links . 101

I
1 Introduction . 11
1.1 Franca framework architecture
1.2 Franca IDL
1.3 Franca Tooling

2 Getting Started . 15
2.1 Install Eclipse-based Franca tooling
2.2 Import example project
2.3 Contents of example project
2.4 Create new Franca interface
2.5 Develop your own code generator

3 Franca Concepts . 17
3.1 Franca Core Model and IDL
3.2 Franca Transformation Framework
3.3 Franca Generator Framework
3.4 Franca Deployment Models
3.5 Guidelines for adding new features to Franca IDL

4 Franca Tools User’s Guide 21
4.1 Franca IDL Editor
4.2 Franca Contract Viewer
4.3 Franca IDL HTML Generator

Part One

1. Introduction

Welcome to Franca! Franca is a framework for definition and transformation of software
APIs. The core of it is Franca IDL (Interface Definition Language), which is a textual
language for specification of APIs (§5). As Franca is based on Eclipse, there are some
powerful tools (§1.3) which can be used to work with Franca. E.g., a user-friendly editor
for Franca IDL files is available.

1.1 Franca framework architecture

Especially for system integrators, it is time and again necessary to combine software
components or subsystems which use different kinds of inter-process-communication (IPC)
and different IDLs. Possible reasons for this are:

• the need for integration of 3rd-party and legacy components
• conformance to new standards and
• non-functional system requirements like performance and footprint

This integration is often solved by ad-hoc solutions, developing wrappers or adapters
manually after defining a mapping of two IDLs’ concepts which should be integrated. This
approach is tedious and often leads to inaccuracies and software shortcomings and bugs in
the runtime system.

Franca provides a framework for bridging the gap between different IDLs by formally
well-founded model transformations in an easy way. Using the Franca framework, these
transformations will be encapsulated as Franca connectors, which are Eclipse plugins for
loading/saving of IDL model instances (i.e. files which formally describe interfaces) and
converting them to or from Franca IDL files. Franca (the lingua franca) is the pivot point
for these transformations. Figure 1.1 shows how connectors (depicted by arrows) form a
star-shaped network between Franca IDL and other IDLs.

Advanced features like model validation can also be included in the connector plugins.
Franca provides its own extensive model validation, which can be used as an intermediate
validation step while transforming models from one IDL to another.

Additionally, the Franca framework is well-suited for developing code generators. This

12 Chapter 1. Introduction

Figure 1.1: Franca transformation framework.

is shown in Figure 1.2. Using connectors (i.e., IDL model transformations) and generators
together leads to powerful tool sets which can be used to convert interfaces in several IDLs
to Franca and generate source code and configuration files from this. Thus, Franca really
helps to solve the integration problem mentioned above in an elegant way.

Figure 1.2: Franca transformation and generation framework.

For detail information about the architecture concepts of Franca, please refer to chapter
Franca Concepts (§3).

1.2 Franca IDL

Franca IDL is language-neutral and also independent of concrete bindings. Here is a simple
example with an interface which supports just one method:

interface CalculatorAPI {
method add {

in {
Float a
Float b

}
out {

Float sum
}

}
}

APIs defined with Franca IDL may consist of attributes, methods and broadcasts. You
may rely on built-in, primitive types (e.g., Int16 or String) or define your own types using

1.3 Franca Tooling 13

arrays, structures, enumerations, type aliases, maps and others. For some of the types,
inheritance is supported.

Franca IDL also supports to optionally define the dynamic behaviour of an API. This
is done by specifying a contract, which basically consists of a protocol state machine (PSM)
which is a part of the interface. The contract defines states of the interface and transitions
between those states. Each transition is triggered by a method call, a broadcast, or the
change of an attribute of the interface. For client/server-like architectures, you can think
of the PSM as being part of the connection.

Franca IDL specifications may be distributed to multiple files. This is especially useful
if several APIs have to be defined, which share some common data types and structures.

For detail information about syntax and semantics of Franca IDL, please refer to the
Franca IDL Language Reference (§5).

1.3 Franca Tooling

The core tool for Franca users is the nice textual editor which can be used to review and
edit Franca IDL files. The editor is provided as Eclipse plugin and can be installed in any
Eclipse environment which provides modeling support. Figure 1.3 shows a screenshot of
Franca’s IDL editor in action.

Figure 1.3: Screenshot of Franca IDL editor.

The editor provides syntax highlighting, code completion, folding, online validation, a
helpful outline view, jump-to-definition and find-references with shortcuts, and many more
features. You can find additional information about the editor here (§4).

The Franca distribution also contains an example generator, which produces HTML
files from Franca IDL files. This can be used as is (for generating HTML documentation
from interface definitions), or adapted to your needs by using the clone-and-own pattern.

For more information about the Franca IDL editor and other tooling, please refer to
chapter Franca Tooling (§4).

2. Getting Started

All tooling needed for Franca is available as a set of Eclipse plug-ins. Thus, the easiest way
to start with Franca is to use an off-the-shelf Eclipse distribution and add those plug-ins
and their dependencies to this environment. This section will describe how to quickly
install this tool platform and be able to

• define interfaces using the Franca IDL textual editor
• develop a code generator based on Franca IDL interfaces

If you haven’t done so, we recommend that you read the Introduction chapter (§1) now in
order to get some fundamental information about Franca.

2.1 Install Eclipse-based Franca tooling

The installation instructions for the Franca tooling are not part of this User Guide. You
will find them online at the Franca EclipseLabs page (Wiki section): Franca Quick Install
Guide.

2.2 Import example project

The example project org.franca.examples.basic is provided as part of Franca’s public
distribution. Put this project onto your local file system and import it to the Eclipse
workspace by the following steps:

1. In Eclipse, select File > Import....
2. In the dialog that opens up, select General > Existing projects into workspace.
3. In the Import projects dialog, browse the file system and locate the directory where

the org.franca.examples.basic directory is contained.
4. Select the project in the Projects list.
5. Ensure that Copy projects into workspace is not selected.
6. Press Finish.

The example project will be part of your Eclipse workspace now. Open the Franca IDL
example file models/org/example/MediaPlayer.fidl by locating it in the Package Explorer

https://github.com/franca/franca/wiki/Franca-Quick-Install-Guide
https://github.com/franca/franca/wiki/Franca-Quick-Install-Guide

16 Chapter 2. Getting Started

and double-click it. The Franca IDL textual editor will open, allowing you to review the
example and also do some changes.

2.3 Contents of example project

The example project provides several test cases, which are located in the package
• org.franca.examples.basic.tests

You will find this package in the src folder which is part of the org.franca.examples.basic
example project. Each of these test cases might be started by selecting Run As > JUnit
Test in the test’s context menu.
• Test case Franca2HtmlTest.java: This test loads a Franca example file and generates

a documentation html page from it. The html page will be located in the folder
src-gen/interfaces. Press F5 for refreshing this folder in case it doesn’t show up there
after running the test case.
• Test case HppGeneratorTest.java: This test loads a Franca example file and generates

a C++ class definition from it. The generated code will be printed on the console. It
is just an example and is by far not complete.

2.4 Create new Franca interface

In order to create a new Franca interface, open the context menu of the folder exam-
ples/franca and select New > File. In the New File dialog, enter a file name with the
extension .fidl. After pressing the Finish button the Franca IDL editor will show up with
the new file, which is still empty.

Now you may use keyboard shortcuts like Ctrl-Space to use Content Assist to create
the contents for your Franca file.

More information is available about Franca concepts (§3) and in the Franca language
reference (§5).

2.5 Develop your own code generator

If you want to develop a new generator which can produce source code from any Franca
IDL file, we recommend to use the example generator from test case HppGeneratorTest.java.
This code generator has been developed with the Xtend language, which translates directly
to Java classes. Further documentation about Xtend can be found here.

The example generator ExampleHppGenerator.xtend is located in folder src, in package
org.franca.examples.basic.generators.
For starting quickly, clone this xtend file and also the corresponding test case and adapt

the copied files for your needs. For more information on generator development, please
refer to Building generators with Franca (§9).

http://www.xtend-lang.org

3. Franca Concepts

The Franca framework is built on several concepts:

• the Franca core model and the Franca IDL
• the Franca transformation framework
• the Franca generator framework
• distinction of IDL model and deployment model

This chapter provides some detailed explanation for each of these concepts.

3.1 Franca Core Model and IDL

3.1.1 Franca Core Model

Franca aims at formal definitions of software interfaces. Basically, this targets information
about attributes and methods provided by the interfaces which should be defined. Franca
contains a core model, which describes these concepts (and some more, like datatypes).
The core model is implemented using the Eclipse Modeling Framework (EMF). Based on
the EMF technology, there is a rich set of tools available for manipulating and transforming
models describing software interfaces.

The detailed API of Franca’s core model is described in section Franca Model API (§8).

3.1.2 Franca IDL Model

Franca is not only able to define interfaces somehow, but via an IDL. Therefore, Franca IDL
has been created as a textual language (a DSL, short for Domain-Specific Language), which
can be used with the help of a nice editor to create, review and edit software interfaces.
The internal representation of Franca IDL files (i.e. interface definitions) is the core model
described above. The IDL is implemented with Xtext.

The detailed reference of Franca IDL is described here (§5).

3.1.3 Franca Core Eclipse Plugins

The following plugins are relevant for the core model and the IDL:

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/xtext

18 Chapter 3. Franca Concepts

• org.franca.core: This plugin contains the core model based on EMF.
• org.franca.core.dsl : This plugin contains the IDL definition. It is based on org.franca.core

and Xtext.
• org.franca.core.dsl.ui : This plugin contains the IDL textual editor. It is based on

org.franca.core, org.franca.core.dsl, Xtext and the user interface parts of the Eclipse
IDE.

3.2 Franca Transformation Framework

Based on the Franca core model described above, interface specifications defined in other
IDLs (in many different formats, ranging from XML to textual DSLs or proprietary formats)
can be transformed to/from Franca. In that context, Franca plays the role of a pivot model.
Different IDLs can be transformed into each other by chaining transformations like: IDL1
to Franca to IDL2.

Figure 3.1 shows an example setup of Franca transformations and generators. The
green arrows indicate transformation and reverse transformation between the Franca core
model and another IDL’s model.

Figure 3.1: An example setup of Franca transformations and generators.

Generally, IDLs in arbitrary formats can be part of the transformation framework.
However, Franca provides special support for IDLs which are implemented using EMF. In
this case, the Xtend language can be used to implement transformations in an elegant way.

Franca defines a pattern for implementing such transformations: the connector. A
Franca connector for a specific non-Franca IDL provides functions for loading and saving
models in that IDL and also for transforming models to/from Franca. Each connector should
implement Franca’s IFrancaConnector interface located in the org.franca.core.framework
package. Typically, each connector is provided as a separate Eclipse plug-in. E.g., Franca’s
D-Bus Support feature contains the plug-in org.franca.connectors.dbus (and a corresponding
UI plug-in) for handling DBus Introspection XML files.

See chapter Bulding Transformations (§10) for more details on this concept. In chapter
Franca Connectors (§7) the currently supported connectors are listed and explained in
some more detail.

http://www.xtend-lang.org

3.3 Franca Generator Framework 19

3.3 Franca Generator Framework

The Franca core model is also used as a starting point for generating code and other
artifacts. As EMF provides a generated Java API (§8) out of Franca’s core model, a
plethora of tools can be used for building generators. We recommend to use the Xtend
language for this, as it is a simple and productive way of implementing generators based
on a Java API.

In Franca’ source distribution you can find the HTML Generator (§4.3), which generates
nice HTML pages out of Franca IDL interfaces. This generator can serve as an example of
how to build generators for Franca models with Xtend.

See chapter Building Generators (§9) for more details on this concept.

3.4 Franca Deployment Models

The contents of the Franca core model and the IDL are deliberately restricted to the actual
interface specification. Additionally, there is a lot of information regarding to interfaces
and APIs which are related to the implementation of the interfaces on a target platform
and the actual deployment of these interfaces on the platform. Some examples for this
kind of data:
• How are the data types encoded on the target platform (e.g., endianness, padding)?
• Are calls blocking or non-blocking?
• How can the instances of an interface be found and addressed (i.e., service discovery)?
• Which quality-of-service promises are valid?

The next section (§3.5) provides some guidelines for deciding whether new features belong
to the Franca IDL itself or to the deployment model.

The actual information in a deployment model depends heavily on the target IPC
framework. Therefore, there is no generic deployment model (on a similar abstraction level
as Franca IDL itself). Instead, the features of the actual deployment model for the target
platform can only be defined with the target platform in mind.

As the information which must be stored in a deployment model is equally important as
soon as a Franca IDL interface is incarnated on a real target, the Franca Framework provides
support for defining and creating deployment models. A separate Franca Deployment
Language is available, which contains of two parts:
• specification of deployment properties (done only once per deployment target plat-

form)
• definition of actual values for deployment properties (done for every Franca interface

which has to be deployed on the target platform)
As it is important that deployment properties can be accessed easily during code generation,
validation, etc., Franca provides some infrastructure for retrieving the deployment data
attached to various interface entities easily.

See chapter Franca Deployment Models (§6) for more details about deployment concepts,
their relation to Franca IDL and some examples.

3.5 Guidelines for adding new features to Franca IDL

Although the feature set of Franca IDL can cover the needs of many today’s IDLs and IPC
frameworks on the market, there might be the need to extend Franca IDL. Technically,
this is no big deal. However, extending the expressivity of Franca IDL will usually require
adaptions on existing transformations and code generators in order to reflect the IDL
changes in the dependent artifacts. Thus, every extension to Franca IDL should be
well-founded and backed with a solid semantic notion.

http://www.xtend-lang.org

20 Chapter 3. Franca Concepts

In order to support features which are seemingly missing in Franca IDL, there are
several options:
• actually extend Franca IDL to support the feature
• put the additional information in a structured comment (§5.7.2) (using an appropriate

@-tag)
• put the additional information into a platform-specific deployment model (§3.4)
• deliberately ignore the feature (if there is a good reason for this)

In order to decide which of these option is appropriate consider the following criteria:
• IDL: information needed only for the application logic like:

1. syntactic description of interfaces
2. dynamic behaviour, e.g. application protocol contracts
3. application constraints:

– like discrete values
– interval ranges accepted for method input parameters
– default values for attributes

• deployment model : information that is used for code generation but is highly depen-
dent on the backend IPC used

1. call semantic: synchronous, asynchronous?
2. communication partner addressing information, e.g. TCP/IP addresses or service

discovery related information
3. data coding: physical representation of data (e.g., alignment, memory layout)
4. QoS information, allocation of ressources: network (bandwidth, priorities), CPU

(priority, processing share), RAM (quota), etc.
• structured comments: information not used for productive code generation

1. documentation
2. meta-information used during transformations (e.g., URI or filename of source

IDL
3. meta-information regarding the interface itself (e.g. deprecation)

4. Franca Tools User’s Guide

4.1 Franca IDL Editor

The core tool for Franca users is the nice textual editor which can be used to review and
edit Franca IDL files. The Franca IDL Editor is a textual editor which is similar to Eclipse’s
text-based editors like in JDT or CDT. It is provided as Eclipse plugin and can be installed
in any Eclipse environment which provides modeling support.

The following screenshot shows the Franca IDL editor in action.

The editor provides syntax highlighting, code completion, content assist, folding, online
validation, a helpful outline view, jump-to-definition and find-references with shortcuts,
and many more features. See Table 4.1 for a table of most important keyboard short-cuts
for Franca.

You may download a nice cheat sheet with more keyboard shortcuts here.

More detail about the Franca IDL Editor will be provided here later.

Shortcut Function Description

Ctrl-7 Toggle comment Toggle comment for current line or
selection.

Ctrl-Space Content Assist Context sensitive suggestions for pos-
sible values.

F3 or Ctrl-MouseClick Jump to definition Jumps to the definition of the refer-
ence under cursor.

Table 4.1: Most important Eclipse keyboard short-cuts for Franca.

http://5ise.quanxinquanyi.de/2012/01/13/xtext-end-user-domain-experts-cheat-sheet/

22 Chapter 4. Franca Tools User’s Guide

Figure 4.1: Screenshot of Franca IDL editor with content assist and validation markers.

4.2 Franca Contract Viewer

The dynamic behavior of interfaces can be modeled using protocol state machines. See
section Contracts (§5.6) for a description of the correct syntax. As contracts must be an
integral part of a Franca interface, the state machines are modeled in the same textual
editor as the other parts of a Franca interface (as described in the previous section).

In order to understand the structure of the protocol state machine of a contract quickly,
Franca comes with a Contract Viewer. In order to use it, the Franca User Interface
Add-Ons feature has to be installed in the IDE.

4.2.1 Contract Viewer in Franca 0.10.0 and later

Since Franca 0.10.0, the contract viewer implementation is based on the KIELER framework.
After installing KIELER and the Franca User Interface Add-Ons feature (see section Install
Eclipse-based Franca tooling (§2.1) for more information on installation), the Eclipse toolbar
will offer a green/yellow button which allows to open the KIELER View Management
Quick Configuration. The following screenshots show how this toolbar button and the
corresponding dialog look like.

In order to show the contract viewer, you have to ensure that the checkboxes Enable
view management and Show Franca contract are selected. Now a separate contract viewer

4.2 Franca Contract Viewer 23

Figure 4.2: Toolbar button to launch the KIELER configuration.

Figure 4.3: The KIELER quick configuration dialog.

will open for each opened Franca IDL file which defines an interface contract. If the viewer
doesn’t open automatically, select Windows > Show View... > Other and their KIELER
Lightweight Diagrams > Lighweight Diagram.

The following screenshot shows the contract viewer with an example contract.

On the left side, the protocol state machine (PSM) for the contract is displayed, which
consists of states (in yellow) and transitions (arrows). The initial state of the PSM is
depicted by a black dot and an unlabeled transition pointing to it. On the right side of
the viewer, an options section offers several ways to tweak the diagram. E.g., transition
triggers can be hidden and the overall direction of the layout can be tuned.

By clicking on a state in the left-hand part of the view, the corresponding state
definition in the Franca IDL editor is selected automatically. This allows to easily find a
correspondence between the diagram and its textual definition.

4.2.2 Contract Viewer in Franca 0.9.1 and earlier

In Franca 0.9.1 or earlier, the contract viewer implementation was based on ZEST. Here,
the contract viewer could be opened by selecting Window > Show View... > Franca. Its
appearance differed a lot compared to the KIELER based viewer described above.

The ”T” button in the upper right of the ZEST-based viewer window toggled the labels
for all transitions of the protocol state machine. If the labels are switched off, mouse hovers
are available which provide the information about transition conditions.

24 Chapter 4. Franca Tools User’s Guide

Figure 4.4: Screenshot of the Franca Contract Viewer.

4.3 Franca IDL HTML Generator

The HTML generator for Franca IDL files is provided as Java class HTMLGenera-
tor. It is located in package org.franca.generators.html and provided by Eclipse plugin
org.franca.generators. In this plugin, a helper Java class FrancaGenerators is provided
which should be used to run the HTML generator:

FModel fmodel = FrancaIDLHelpers.instance().loadModel(inputfile);
FrancaGenerators.instance().genHTML(fmodel, ”html−gen−dir”);

The HTML generator is implemented using the Xtend language. The Xtend-builder
automatically creates the Java class mentioned above from this implementation.

http://www.xtend-lang.org

II

5 Franca IDL Reference 27
5.1 Data types
5.2 Constant definitions
5.3 Expressions
5.4 TypeCollection definition
5.5 Interface definition
5.6 Contracts
5.7 Comments
5.8 Fully qualified names, packages, and multiple files

6 Franca Deployment Models 51
6.1 Deployment model concepts
6.2 Deployment specifications
6.3 Deployment definitions
6.4 Support for accessing deployment properties

Part Two

5. Franca IDL Reference

The core of Franca IDL is the support for interface definitions (§5.5), consisting of attributes,
methods and broadcasts. Those definitions will be based on a type system (§5.1), which
provides a variety of primitive and user-defined types as well as constant definitions.
Additionally, the dynamic behavior of interfaces can be specified using contracts (§5.6)
consisting of protocol state machines. Types and constants can be defined either on a
global scope using type collections (§5.4), or as part of an interface definition (§5.5). Finally,
Franca IDL supports Java-doc like tagged comments, called structured comments (§5.7)
and language features like packages and imports which can be used for defining interfaces
using multiple Franca IDL files (§5.8).

5.1 Data types

Franca supports a predefined set of primitive data types and a variety of user-defined types.
User-defined types may be arrays, type aliases, structures, unions, enumerations or maps.
User-defined types can refer to primitive types or other, previously defined types.

5.1.1 Primitive types

The primitive types supported by Franca are listed in Table 5.1. There is a number of
very specific signed and unsigned integer types with varying ranges. This allows to be very
specific about the size of these types on any target platform. Additionally, Franca IDL
provides a way to specify generic integer types with optional min/max range (since Franca
0.9.0, see next section).

Caveat: APIs should use arguments of type String or ByteBuffer only for transporting
payload data which is not parsed by the server component which offers the interface. A
useful example for ByteBuffer arguments is a protocol layer which examines the header of
an incoming data package, but doesn’t look at the payload data. If the server does deep
packet inspection or similar on the incoming data, the argument is used as a tunnel for a
protocol which is not specified by the API. This bypass of the API definition weakens the
API abstraction and will inevitably lead to integration issues and runtime problems.

28 Chapter 5. Franca IDL Reference

Type name Description

UInt8 unsigned 8-bit integer (range 0..255)

Int8 signed 8-bit integer (range -128..127)

UInt16 unsigned 16-bit integer (range 0..65535)

Int16 signed 16-bit integer (range -32768..32767)

UInt32 unsigned 32-bit integer (range 0..4294967295)

Int32 signed 32-bit integer (range -2147483648..2147483647)

UInt64 unsigned 64-bit integer

Int64 signed 64-bit integer

Integer generic integer (with optional range definition, see below)

Boolean boolean value, which can take one of two values: false or true.

Float floating point number (4 bytes, range +/- 3.4e +/- 38, ˜7 digits)

Double double precision floating point number (8 bytes, range +/- 1.7e +/- 308,
˜15 digits)

String character string, see caveat below

ByteBuffer buffer of bytes (aka BLOB), see caveat below

Table 5.1: Primitive types of Franca IDL.

5.1 Data types 29

The actual physical encoding of the primitive types depends on the target language. A
default encoding will be defined as part of Franca’s deployment model. Exceptions from
this default encoding can be defined in the target-language-specific deployment model.

5.1.2 Integer with optional range

The primitive integer types with fixed number of bits as defined above (e.g., UInt32) allow
to specify interfaces with the actual implementation in mind. This is typically preferred by
embedded systems developers, in order to exactly know which data is being transported.
However, there are some drawbacks of using these integer types for interface definitions.
The specific implementation platform might not support all of these types, e.g., Java
doesn’t support unsigned integers.

Since Franca 0.9.0, the IDL supports a generic integer type named Integer. In order to
restrict the range of actual values which can be used, Franca IDL allows to specify a range
of values this type can assume. Examples:

Integer
Integer(1,7)
Integer(−20,100)
Integer(0,maxInt)
Integer(minInt,maxInt)

The range is given as a minimum and a maximum value. The min/max values might
be negative, but the minimum value always has to be less then or equal to the maximum
value. If no range is given, the biggest available integer type for the specific platform should
be used. There are special keywords minInt and maxInt, which represent the smallest and
biggest integer on the specific platform, respectively.

Note that by using the Integer type it is possible to emulate all primitive integer types
as defined above. Similarly, it is possible to replace usages of the ranged integer type by the
next bigger primitive integer type given that all restrictions of the specific implementation
platform are known. There is a helper model transformation in the Franca framework
which supports these two type conversions, see section IntegerTypeConverter (§8.3.2).

5.1.3 Arrays

There are two ways of defining array types: explicitly named arrays or implicit array types
without a name.

Explicitly named, one-dimensional arrays can be defined by array ExampleArray of UInt8

The array’s element type can be any primitive or user-defined type, including another
array. This can be used to define multi-dimensional arrays:

array ExampleArrayRow of UInt8
array ExampleArray of ExampleArrayRow

Implicit (”inline”) array types are defined by attaching square brackets (e.g., UInt8[]) to
any other type definition. This can be done for attributes, struct members and arguments
of methods and broadcasts. See more examples below. Note: Inline arrays can only be
defined one-dimensional. If multi-dimensional arrays are needed, only one dimension can
be defined as unnamed array.

The syntax for defining implicit array types doesn’t support specifying fixed array sizes
or array size limits. If you want to define such properties for arrays, you might use Franca’s
deployment model (§3.4) feature.

30 Chapter 5. Franca IDL Reference

5.1.4 Enumerations

Basic enumerations

An enumeration (also called enumerated type) is a data type consisting of a set of named
values called enumerators. In Franca IDL, an enumeration is defined by

enumeration ExampleEnumeration1 {
VALUE 1
VALUE 2
VALUE 3
// ...

}

The enumerators are identifiers which can be used as unique constants. Values for the
enumerators can be defined optionally. Each value is defined using an expression (§5.3) of
type integer :

enumeration ExampleEnumeration2 {
VALUE 1 = 100
VALUE 2 = 100+1
VALUE 3 = 30∗30
// ...

}

As the enumerator value can be any expression of type integer, it is also possible to
specify it with a hexadecimal or binary literal:

enumeration ExampleEnumeration2b {
VALUE 1 = 0xBADA
VALUE 2 = 0X89ab
VALUE 3 = 0b0001001
VALUE 4 = 0B10101
// ...

}

Deprecated: It is also possible to use string constants as enumerator value definitions.
However, this will result in a deprecated-warning by the Franca validator. Note that in
this case the string constant should be parsable as integer number:

enumeration ExampleEnumeration3 {
E1 = ”10”
E2 = ”20”
E3 = ”foo” // invalid, no integer
// ...

}

Enumeration inheritance

Enumeration types support inheritance by using the keyword extends. This allows to derive
a new enumeration type from an existing one and add further enumerators to the base
enumeration. Only single inheritance is allowed for each enumeration - however, a chain or
tree of enumerations can be build. Example:

enumeration BaseEnumeration {
VALUE 1
VALUE 2

}

5.1 Data types 31

enumeration DerivedEnumeration extends BaseEnumeration {
VALUE 3
VALUE 4

}

If the target language doesn’t support inheritance for enumeration types, the extends-
chain will be transformed into a flat enumeration consisting of all enumerators of the base
type(s) and those of the derived type.

5.1.5 Structures

A struct (also called record, tuple, or compound data) is a value that contains other values,
typically in fixed number and sequence and typically indexed by names. The elements of
structs are usually called fields or members (source: Wikipedia).

Basic structs

User-defined structures can be defined by specifying the structure’s members, with a type
and name for each member:

struct ExampleStruct {
UInt8 member1
String member2
ExampleArray member3
UInt16[] member4

}

Element types might be predefined types or user-defined types. This allows e.g. nested
structures or arrays of structures. Element types may also be arrays, e.g., member4 is an
unnamed array of type UInt16.

Note that the struct type definition also defines the order of the elements. Thus, the
following two struct definitions are different :

struct ExampleStruct1 {
UInt8 member1
String member2

}

struct ExampleStruct1 {
String member2
UInt8 member1

}

Any communication implementation should respect the element order given by the
Franca IDL type definition. This is relevant only for usecases where an implicit agreement
on the element order is required. E.g., for binary serialization and deserialization the
element names will not be part of the serialized message. Thus, sender and receiver
of a message have to agree on the element order. In other contexts this might not be
relevant, e.g., when using a JSON-style serialization or for Franca IDL struct initializer
expressions (§5.2.2).

However, as it is not known at interface definition time in which context the interface
will be used, the interface designer has to take the element order into account.

Struct inheritance

Struct types support inheritance by using the keyword extends. This allows to derive a
new structure type from an existing one and add further structure members to the base’s

32 Chapter 5. Franca IDL Reference

members. Only single inheritance is allowed for each structure definition - however, a chain
or tree of structures can be build. Example:

struct BaseStruct {
UInt8 member1
ExampleArray member2

}

struct DerivedStruct extends BaseStruct {
ExampleArray member3

}

If the target language doesn’t support inheritance for structure types, the extends-chain
will be transformed into a flat structure consisting of all members of the base type(s) and
those of the derived type.

Polymorphic structs

The root type in a struct inheritance hierarchy may be marked with the polymorphic-
keyword. Consider the following example:

method callme {
in {

BaseStruct t
}

}

struct BaseStruct polymorphic {
Int16 a

}

struct Derived1 extends BaseStruct {
Int16 b

}

struct Derived2 extends BaseStruct {
String c

}

The caller of method callme might provide an argument of type Derived1, although
the method’s argument type is declared as type BaseStruct. In an environment where
polymorphism is fully supported, the server will then be able to receive an object of the
actual type, i.e., Derived1. It will be able to access the struct element b.

However, as full polymorphism support usually requires some implementation overhead
in the IPC target platform, this behavior has to be explicitly switched on by flagging the
root of the struct inheritance hierarchy with the keyword polymorphic. Without setting
the root struct type to polymorphic, the server-side implementation of the interface will
only be able to access the actual type used in the interface definition (and not derived
types). This low-footprint behavior is the default.

5.1.6 Unions (aka variants)

A union is a value that may have any of several representations or formats; or a data
structure that consists of a variable which may hold such a value (source: Wikipedia).

5.2 Constant definitions 33

Basic unions

Unions can be defined by specifying its possible value types, together with a name for each
representation. As a union will have only one representation at a time, the order of the
union’s elements is not important. Example of a union definition:

union ExampleUnion {
UInt32 element1
Float element2

}

Element types might be predefined types or user-defined types. This allows e.g. nested
unions, or unions of structures. No two elements of an union may have the same type.

Union inheritance

Union types support inheritance by using the keyword extends. This allows to derive a
new union type from an existing one and add further elements to the base union. Only
single inheritance is allowed for each union definition - however, a chain or tree of unions
can be build. Example:

union BaseUnion {
UInt32 genericRepresentation

}

union DerivedUnion extends BaseUnion {
Float aFloat
String aString

}

If the target language doesn’t support inheritance for union types, the extends-chain
will be transformed into a flat union consisting of all elements of the base type(s) and those
of the derived type.

5.1.7 Maps (aka dictionaries)

Maps represent key/value-stores and are typically implemented by B-trees or hashes. The
definition for Maps with Franca IDL specifies the key type and the value type. Example:

map ExampleMap {
Int16 to ExampleStruct

}

Key types as well as value types might be primitive or user-defined types which provide
an equality-relation. NB: In some target languages, key types might be restricted to
primitive types.

5.1.8 Type definitions (aka aliases)

Type definitions can be used to create new type names which are simple aliases for existing
primitive or user-defined types. Example: typedef ExampleAlias is UInt32

5.2 Constant definitions

Franca supports the definition of constants, which are typed values identifiable by a unique
name. Constants might be used as part of any expression (§5.3), given that they have
a compatible type. Tools as code generators should create code which establishes these
constants on the executable platform.

34 Chapter 5. Franca IDL Reference

5.2.1 Primitive constants

Here are some examples of primitive constants:

const Boolean b1 = true
const UInt32 MAX COUNT = 10000
const UInt16 SOME ID = 0xA00B
const UInt8 BYTE ME = 0b00110011
const String foo = ”bar”
const Double pi = 3.1415d

The initializer expression on the right-hand side of the constant definition must evaluate
to a proper type which is compatible with the constant’s type. Note that complex
expressions (§5.3) might be used as initializer expressions. Examples:

const UInt32 twentyfive = 5∗5
const Boolean b2 = MAX COUNT > 3
const Boolean b3 = (a && b) || foo==”bar”

5.2.2 Complex constants

Constants may also have more complex, user-defined types. This will lead to more elaborate
initializer expressions. This section will show examples of how to define constants which
are of array, struct, union and map type.

For array constants, the initializer expression lists the array elements in square brackets.
Example:

array Array1 of UInt16

const Array1 empty = []
const Array1 full = [1, 2, 2+3, 100∗100+100]

Constants of struct type will have to define an initializer expression for each struct
element. Example:

struct Struct1 {
Boolean e1
UInt16 e2
String e3

}

const Struct1 s1 = { e1: true, e2: 1, e3: ”foo”}

If struct types are getting more complex (i.e., with nested struct types or arrays),
the initializer expression is not easy to understand. Therefore, each struct element in
the initializer expression has to be uniquely identified by the element name (e.g., e1 in
the example). Note that explicitly naming the elements in the struct initializer allows to
initialize the elements in any order. Each element has to occur exactly once.

The syntax for union type constants is similar to struct types. However, as a union
represents exactly one of its elements, the initializer expression will only refer to one element
name. Some examples:

union Union1 {
UInt16 e1
Boolean e2
String e3

}

5.3 Expressions 35

const Union1 uni1 = { e1: 1 }
const Union1 uni2 = { e3: ”foo”}

Finally, the initializers for a constant of type map contains a list of key/value pairs.
Example:

map Map1 { UInt16 to String }

const Map1 m1 = [1 => ”one”, 2 => ”two”]

The initializer expressions for the keys and values of each pair might be themselves
arbitrary complex expression. However, they have to be evaluated to the proper type given
by the definition of the map type.

5.3 Expressions

Expressions can be used in Franca IDL in various ways:
• as default values for enumerators (§5.1.4)
• as initializer expressions for constant definitions
• as guard conditions in interface contracts (§5.6.2)
• as initializer expressions for state variables (§5.6.4) in contracts
• in the action code (§5.6.3) of contracts (e.g., in if-conditions)

5.3.1 Type system

Expressions in Franca IDL are typed. The type system supports the basic types boolean,
integer, float, double and string. The type system is aware of user-defined types defined in
Franca IDL. I.e., if a struct type is defined by

struct SomeStruct {
UInt8 member1
String member2

}

then the type SomeStruct is also available in expressions. E.g., if expression s refers to
a Franca constant of type SomeStruct, the expression s−>member1 will be of type integer.

The Franca validator ensures that all expressions have a proper type which also has
to be consistent with the usage of the expression. E.g., an expression used as a guard
condition in a contract must be of boolean type.

Type system rules

Note that in order to reduce specification errors the Franca IDL type system provides only
a minimum of implicit type conversions (aka typecasts). In particular, the following rules
apply:
• There is no implicit conversion from integer to float or vice versa.
• There is no implicit conversion from integer to double or vice versa.
• There is an implicit conversion from float to double and vice versa.
• There is no implicit conversion from enumeration types to integer.
• For struct and union type inheritance: There is an implicit upcast for derived struct

(and union) types. There is no downcast for struct and union types.
• For enumeration types: There is an implicit downcast for enumeration types (i.e.,

an enumerator from a base enumeration can be used as representant of any derived
enumeration).

36 Chapter 5. Franca IDL Reference

• The typedef mechanism is transparent for the type system (i.e., types introduced by
typedef will be handled identically to their base types).

5.3.2 Constant values

The basic elements for building expressions are constant values.

// constant expressions
true // boolean
false // boolean
100 // integer (positive)
−273 // integer (negative)
0x0ABC // integer (hexadecimal)
0b010101 // integer (binary)
1.2f // float
6.022e23f // float
3.1415d // double
8.617e−5d // double
”foobar” // string

5.3.3 Comparison operators

Two expressions of equal type may be related to each other using comparison operators.
The resulting expression is of type boolean.

Examples for all comparison operators will be given here.

5.3.4 Arithmetic operations

Expressions may be built from sub-expressions of type integer, float or double using
arithmetic operations.

Examples for all arithmetic operators will be given here.

5.3.5 Boolean operations

Expressions may be built from sub-expressions of type boolean using boolean operations.

Examples for all boolean operators will be given here.

5.4 TypeCollection definition

A type collection is a (maybe empty) set of user-defined types and constant definitions.
Previous to Franca-0.8.0, user-defined types could be located on the top-level of a Franca
model. This has been banned with Franca-0.8.0 in order to provide a consistent scheme
of fully qualified names and versioning for user-defined types. Type collections may also
define constants.

Each type collection in Franca has some metadata: a single identifier name for the
collection and an optional version number (with major/minor scheme). The name of the
type collection will be scoped relative to the fully qualified name of the package defined at
the beginning of the Franca file. The following example shows the basic type collection
definition:

typeCollection ExampleTypeCollection {
version { major 3 minor 1 }

// put user−defined types and constant definitions here

5.5 Interface definition 37

}

As type collections are just a plain collection of user-defined types, inheritance is not
supported for them. All user-defined types inside a type collection have global visibility.
I.e., they can be used for defining interfaces as well as user-defined types in another type
collection. This is different from the visibility of types that are defined as part of an
interface (see below).

5.5 Interface definition

Each interface in Franca consists of some metadata (e.g., interface name and version
number), the actual interface definition (consisting of attributes, methods and broadcasts),
an optional contract (§5.6) specifying the dynamic behavior of the interface and, last but
not least, user-defined data types (§5.1) and constants (§5.2). An interface definition might
use the user-defined types of another interface definition only if it inherits (directly or
indirectly) from that interface definition. Thus, the visibility of user-defined types as part
of an interface definition is restricted. This is different from the global visibility of types
which are part of a type collection.

5.5.1 Basic interface definition

Interface name, version and contents

The basic interface definition using Franca includes an interface name and a version number
(major/minor scheme). The name of an interface has to be a single identifier. The following
example gives a blueprint for the structure of an interface definition:

interface ExampleInterface {
version { major 5 minor 0 }

// put type definitions and constant definitions here

// put attributes, methods and broadcasts here

// put optional contract here
}

The name of the interface will be scoped relative to the fully qualified name of the
package defined at the beginning of the Franca file.

The elements of an interface can be arranged freely. This allows to provide a logical
grouping of interface elements. The interface contract (if any) should be the final element
of the interface definition. In previous Franca versions, the order of the elements of an
interface was fixed and thus didn’t allow a logical grouping.

Interface versioning and change compatibility

The specification of a major/minor version number is optional, but is strongly recommended.
Changes in the major number indicate changes which are not backward compatible.
Example use cases for incompatible changes:

• remove attribute, method or broadcast
• remove element from struct or union
• rename an attribute
• rename a method or broadcast, or one of its arguments
• rename a user-defined data-type
• add a contract to an interface which previously didn’t have any

38 Chapter 5. Franca IDL Reference

• tighten the constraints for the dynamic behavior of an interface (i.e., its contract)

Interface designers should try hard to avoid incompatible changes, or at least provide
periods during which a feature is marked as deprecated before it is removed completely.

Changes in the minor number indicate changes which are backward compatible. Example
use cases for backward compatible changes:

• add attribute, method or broadcast
• add an argument to a method or broadcast (*)
• add a field to a struct or union (*)
• remove a contract from an interface
• ease restrictions on the dynamic behavior of an interface (i.e., its contract)

(*) In some target IDLs, adding arguments for methods or broadcast or adding members
to structs might be regarded as incompatible change. It might be hard to map the version
numbers between Franca and those IDLs.

Interface inheritance

Franca supports interface inheritance by using the keyword extends. This allows to derive
a new interface from an existing one and add further elements to the base’s members.
Only single inheritance is allowed for each interface definition - however, a chain or tree of
interfaces can be build. Example:

interface BaseInterface {
// ...

}

interface DerivedInterface extends BaseInterface {
// ...

}

Table 5.2 lists all interface members and how their semantics is handled with respect
to interface inheritance.

If the target language doesn’t support inheritance for interfaces, the extends-chain
will be transformed into a flat interface definition consisting of all elements of the base
interface(s) and those of the derived interface.

5.5.2 Attributes

An attribute is a property on the provider side, which is defined as part of the interface
with its type and name:

interface ExampleInterface {
attribute UInt32 someAttribute
attribute ExampleArray otherAttribute
attribute String[] arrayAttribute

}

Attributes might have primitive types or user-defined types. They also can be defined
as inline, unnamed arrays (e.g., the attribute arrayAttribute in the example above).

The interface provider holds the data for its attributes and is able to change their
values. The clients of an interface might actively read its attributes’ values. The clients
also might register for updates of this attribute and will get change notifications afterwards.
The detailed behavior of an attribute can be specified by a combination of flags (see details
below).

5.5 Interface definition 39

Interface element Inheritance semantics

type definitions All types of the base interface are inherited by the derived
interface. Redefining of types is not allowed (i.e., type with
same name in base and derived interface).

constant definitions All constant definitions of the base interface are inherited by
the derived interface. Redefining of constants is not allowed
(i.e., constant with same name in base and derived interface).

attributes All attributes of the base interface are inherited by the de-
rived interface. Overloading of attributes is not allowed (i.e.,
attribute with same name in base and derived interface).

methods All methods of the base interface are inherited by the derived
interface. Methods can be overloaded, either in the same
interface or via inheritance. I.e., methods with the same name
can be defined as long as the signature of those methods is
different. See section 5.5.3 for more details on overloading.
In versions prior to Franca 0.7.4, overloading of methods was
not allowed.

broadcasts All broadcasts of the base interface are inherited by the
derived interface. Broadcasts can be overloaded, either in the
same interface or via inheritance. I.e., broadcasts with the
same name can be defined as long as the signature of those
methods is different. See section 5.5.4 for more details on
overloading. In versions prior to Franca 0.7.4, overloading of
broadcasts was not allowed.

contract The contract of the base interface is inherited by the derived
interface. It is not possible currently to redefine the inherited
contract. This will change in a future release of Franca (this
will allow extending the contract of its base interface by the
derived interface).

Table 5.2: Franca interface members and their semantics with respect to interface inheri-
tance.

40 Chapter 5. Franca IDL Reference

For target IPC platforms which do not support attributes, code might be generated
to add this support. Typically, a getAttribute method and a registerForUpdate method
would be provided.

Readonly attributes

By default, clients can read and write the values of attributes. This access can be restricted
by specifying the per-attribute flag readonly. When the flag is given, the clients of the
corresponding interface are not allowed to change the attribute’s value. However, the server
might offer some methods which will change the attribute. Example for the readonly-flag:

interface ExampleInterface {
attribute Float throttle
attribute Float speed readonly

}

In the example, attribute throttle can be written, while attribute speed can only by
read by the clients.

Write-only attributes

It is also possible to disallow the read access to the value of an attribute by specifying
the per-attribute flag noRead (available since Franca 0.12.0). When the flag is given, the
clients of the corresponding interface are not allowed to explicitly read the attribute’s value.
I.e., code generators will not provide a getter function for the generated attibute. However,
the attribute’s value might still be retrieved using the subscription mechanism as described
below. Example for the noRead -flag:

interface ExampleInterface {
attribute UInt32 controlRegister noRead

}

In the example, attribute controlRegister cannot be explicitly read by the clients.
However, it can be written, and updates might be received using the subscription mechanism.

Client subscriptions

As mentioned above, clients of an interface might register for updates of an attribute’s
value. Sometimes it is necessary to specify attributes which do not support this subscription
option. This can be accomplished by adding the flag noSubscriptions to the attribute’s
definition. Example for the noSubscriptions-flag:

interface ExampleInterface {
attribute Double temperature readonly noSubscriptions
attribute Boolean overheated

}

The attribute temperature in the example will change often, so that it is better to
disallow subscriptions and use some kind of polling instead. For the boolean attribute
overheated, subscriptions are possible (which is really what clients expect). Note that the
noSubscriptions flag has been combined with the flag readonly in order to disallow changes
by the clients, too.

5.5.3 Methods

Basic method syntax

A method in a Franca interface is called by one of the clients using the interface; the
response will be sent by the server. Therefore, a method definition will contain a set of
in-arguments and a set of out-arguments, each with own type and name. Example:

5.5 Interface definition 41

interface Calculator {
method divide {

in {
UInt32 dividend
UInt32 divisor

}
out {

UInt32 quotient
UInt32 remainder

}
}

}

Arguments might have primitive types or user-defined types. Arguments may be also
specified as unnamed, inline arrays as in the following example:

interface LetterCount {
method count {

in {
String[] words

}
out {

UInt16[] counts
}

}
}

Argument names must be unique. This also applies across the in and out sections.
Thus, the following example will not be valid:

method play {
// validation error: ”Duplicate argument name ’track’ used for in and out”
in { TrackInfo track }
out { UInt16 track }

}

Runtime semantics of method calls

The runtime behavior of a method call (e.g., blocking vs. non-blocking) is subject to
implementation by the underlying target IPC stack. Thus, it will not be specified as part
of the interface definition in the IDL. This information will be stored in an additional
deployment model (§3.4), instead.

Declaration of method errors

If a problem occurs during execution of the method on server side, the server might issue
an error instead of sending the normal reply with its out-arguments. This semantics can
be defined as in the following example:

interface Calculator {
method divide {

in {
UInt32 dividend
UInt32 divisor

}
out {

UInt32 quotient

42 Chapter 5. Franca IDL Reference

UInt32 remainder
}
error {

DIVISION BY ZERO
OVERFLOW
UNDERFLOW

}
}

}

The component providing the Calculator interface will either return a reply with the
out-arguments or reply with an error code as specified by the nameless enumeration defined
as part of the method specification.

In fact, the syntax above is the same as with the definition of enumerations (§5.1.4).
I.e., optional values and structured comments can be added to each of the enumerators.
Moreover, a reference to a base enumerator can be added using the keyword extends - this
allows inheriting of common error codes:

interface Calculator {
method divide {

in {
UInt32 dividend
UInt32 divisor

}
out {

UInt32 quotient
UInt32 remainder

}
error extends GenericErrors {

DIVISION BY ZERO
OVERFLOW
UNDERFLOW

}
}

enumeration GenericErrors {
INVALID PARAMATERS
// ...

}
}

Finally, it is possible to directly reference a separately defined enumeration, which
might also be located in a different Franca file. Example:

interface Calculator {
method divide {

in {
UInt32 dividend
UInt32 divisor

}
out {

UInt32 quotient
UInt32 remainder

}
error CalcErrors

}

5.5 Interface definition 43

enumeration CalcErrors {
DIVISION BY ZERO
OVERFLOW
UNDERFLOW

}
}

Fire-and-forget methods

If neither out arguments nor error return codes are specified for a method, the server will
by default send an (empty) reply to its client. This behavior can be changed by specifying
a fireAndForget flag for the method, which indicates that the server will not respond at all.

Example:

interface Watchdog {
method stillAlive fireAndForget {

in { UInt16 health }
}

}

This can be used to implement lightweight communication patterns.

Method overloading

Franca IDL also allows method overloading, i.e., interfaces with two or more methods
with the same name. This is allowed as long as the method signatures are different, i.e.,
the sets of combined in- and out-argument types must be different for each overloaded
method. Note that only the types will be part of the signature, not the argument names.
The following example shows a valid case of overloading:

interface SomeInterface {
method callMe {

in { Boolean b }
}

method callMe {
in { Boolean b }
out { String s }
}
}

Note that although the set of in-arguments is identical, the second version of method
callMe has an additional out-argument. This is a sufficient distinction to allow overloading.
It is also sufficient to have a difference in

In Franca contracts and deployment models it is necessary to uniquely reference single
methods. In order to tell apart several overloaded methods with the same name, the
method names can be extended by selectors, which are not part of the method name, but
which can be used to discriminate overloaded methods. This is shown in the following
example.

interface SomeInterface {
method callMe:a {

in { Boolean b }
}

method callMe:b {

44 Chapter 5. Franca IDL Reference

in { Boolean b }
out { String s }
}
}

The selectors for each group of overloaded methods must be unique, which is essential
for their purpose to discriminate the methods which otherwise have an identical name.

Overloading is also relevant in the context of interface inheritance. For methods of
derived interfaces which overload methods from base interfaces the same rules apply as
described previously. See section 5.5.1 for more information on interface inheritance.

5.5.4 Broadcasts

A broadcast in a Franca interface is called by the server and will be received by the clients
using the interface. A broadcast definition will contain a set of out-arguments, each with
own type and name. Example:

interface ExampleInterface {
broadcast buttonClicked {

out {
ButtonId id
Boolean isLongPress

}
}

}

Arguments might have primitive types or user-defined types.

Selective broadcasts

The default communication pattern for broadcasts is that each server-initiated broadcast
will be send to all connected clients. Optionally, the keyword selective can be given to
indicate that the server might send this broadcast to one or a subset of the connected
clients, depending on application logic and/or deployment information. Example syntax:

interface ExampleInterface {
broadcast stop selective {

out { Boolean immediately }
}

}

The selective keyword will have the following implications:

• The client must be aware that the server has explicitly chosen to send the broadcast
to it.
• There might be special register() functions (or similar) generated on client side in

order to allow clients to decide if they want to be receivers of the selective broadcast(s).
However, this is not mandatory and will usually be configured by the deployment
model or defined implicitly for a given target platform.
• The server will have the opportunity to select among its clients when sending the

broadcast (e.g., by code especially generated for this reason).

Broadcast overloading

Also for broadcasts Franca IDL allows overloading. For more details on restrictions,
selectors and inheritance see section 5.5.3. The following example shows two overloaded
broadcasts with selectors.

5.6 Contracts 45

broadcast tsunamiDetected:a {
out { String location }

}
broadcast tsunamiDetected:b {

out { Double strength }
}

5.5.5 Interfaces managing interfaces

In some IPC mechanisms, e.g. D-Bus, we have the concept of linked interfaces. This
usually takes the form that there is a root interface, for example a bluetooth service. Then
there are many interfaces which are controlled by the root interface. E.g., each physical
bluetooth adapter provides some interface which has to be controlled by the root bluetooth
service.

Franca IDL allows to define this association between interfaces using the keyword
manages. A downstream tool (e.g., a code generator) could then generate appropriate code
for being informed about the ”children” in the implementation of the root.

The following example shows two interfaces which specify the services SomeService and
OtherService. The third interface BluetoothMaster will control all connections based on one
of the two former interface types. This relationship is modeled by the keyword manages

and a list of managed services.

interface SomeService {
method getDirectory { }
method getFile { }

}

interface OtherService {
method playMusic { }

}

interface BluetoothMaster manages SomeService, OtherService {
attribute UInt16 connectedClients
method disconnectAll { }

}

The manages-keyword was introduced in Franca 0.8.8.

5.6 Contracts

5.6.1 Basic concept of contracts

For each Franca interface, a contract might be specified which defines the dynamic behavior
of the interface. Generally, if a contract is part of the interface, all interactions of clients
and providers of this interface have to obey the specification in the contract. This is
different from behavior specification by sequences (e.g., MSCs in MOST), which provides a
set of allowed sequences, but in general doesn’t require that all legal sequences have been
specified.

Note that a contract is a specification of the interaction of a pair of one client instance
and one provider instance. If multiple clients are connected to one interface on provider
side, one instance of the contract is (conceptually) established for each client.

In order to specify the dynamic behavior of a Franca interface, a PSM (short for:
Protocol State Machine) is defined which specifies the allowed states of the connection and

46 Chapter 5. Franca IDL Reference

the allowed transitions between those states. Example:

// specification of dynamic behavior on the interface
contract {

PSM {
initial idle
state idle {

on call setActivePlayer −> working
}
state working {

on signal attachOutput −> idle
}

}
}

The client/server connection specified by this interface can have two states:
• idle: The client is allowed to call the setActivePlayer method. No other interaction via

the interface is allowed. This is the initial state. If the client calls the setActivePlayer
method, the state will change to working.
• working : The server is allowed to send the broadcast attachOutput. No other

interaction via the interface is allowed. After this broadcast has been sent, the state
will change to idle.

5.6.2 Protocol state machines

The Protocol State Machines used for specifying Franca’s interface contracts use events to
specify the transitions from one state to another. Valid events might be:
• call : A method call initiated by the client.
• respond : The server’s response for a client’s method call. Note that fireAndForget

methods do not trigger this kind of event (see Fire-and-forget methods (§5.5.3)).
• signal : A broadcast sent by the server.
• set : An attribute’s value is being changed by a client.
• update: An indication by the server that an attribute’s value has been changed.

A transition will be triggered by one out of a set of events. The actual transition can be
guarded by a boolean condition.

5.6.3 Transition actions

For each transition of a PSM, an optional action can be defined. The action consists of a
set of statements which will be executed each time the transition is triggered. Note that
the execution of these statements will usually not be implemented by real code on the
target system. Instead, it will be interpreted during some analysis of the interaction on the
interface.

All actions are defined in terms of an action language, which is part of Franca IDL.
This action language is purposefully small and simple in order to allow static analysis and
interpretation of the actions.

Here is an example which shows the syntax of actions:

contract {
PSM {

initial idle
state idle {

on call setActivePlayer −> working {
// put action code here

}

5.6 Contracts 47

}
state working {

on signal attachOutput −> idle {
// put action code here

}
}

}
}

The elements of the action language are still subject to development and will be
described in a later version of this document.

5.6.4 State variables

A PSM can refer to state variables which have been defined as part of the contract. The
state variables are statically typed. Any guard or action of a transition can refer to the
state variables. The boolean guards can check the values of either message arguments,
attribute values or state variable values.

The following examples enhances the contract defined above by a state variable and
an action counting the number of setActivePlayer method calls. The two transitions
of state working are guarded; the guards are checking the value of the state variable.
After 100 interactions, the PSM will enter state silence and will not accept any more
events. The contract specifies an interface which allows a maximum of 100 calls of method
setActicePlayer. As the silence state doesn’t have any outgoing transitions, the system will
have to be restarted in order to allow further activities on this interface.

contract {
vars {

UInt32 count;
}
PSM {

initial idle
state idle {

on call setActivePlayer −> working {
count = count + 1

}
}
state working {

on signal attachOutput [count<100] −> idle
on signal attachOutput [count>=100] −> silence

}
state silence { }

}
}

In a future release of Franca IDL there will be mandatory extensions for defining the
value domains of the state variables (e.g., ranges for integer values). This will allow model
checking of PSMs.

5.6.5 Exploiting contract information

The contract information can be used in a variety of ways:
• Development tools used for the implementation of components could use the infor-

mation to guide the developer through the software design process.
• Test code could be generated on client or server side which checks for correct sequences

at runtime.

48 Chapter 5. Franca IDL Reference

• Target traces can be analysed offline by validating sequences against the contract.

The contract-feature in Franca is still under development. However, by specifying the
proper and allowed behavior of interfaces in a consistent way the value and expressiveness
of interface definitions can be increased to a large extent.

5.7 Comments

Franca supports two kinds of comments: unstructured and structured comments.

5.7.1 Unstructured comments

Unstructured comments are usually one-line and multi-line comments as well known from
C, C++ or Java. Examples:

// this is a one−line unstructured comment
typedef TypeOne is UInt8

/∗ this is a multi−line unstructured comment,
it could be used also for one−liners :−) ∗/

typedef TypeTwo is Int16

5.7.2 Structured comments

Structured comments consist of tagged meta-information as known for example from
JavaDoc. Each tag is started with an @-sign. The set of available tags is part of the Franca
specification.

<∗∗ @description : Currently active player. All other players will
reject any requests.

@author : E. Wiggin ∗∗>
attribute tPlayer activePlayer

Downstream tools can access the tags and their string content and use them for analysis
and code generation.

All built-in tags are listed in Table 5.3 together with descriptions.

5.8 Fully qualified names, packages, and multiple files

5.8.1 Fully qualified names

A fully qualified name (or short: FQN) is a sequence of identifiers (at least one) separated
by dots.

5.8.2 Package declarations

Each Franca file starts with a package-declaration (similar to Java). This puts all type
collections and interfaces defined in that file into the package. The absolute reference for
this top-level element is computed by concatening the package’s FQN and the element’s
FQN. Example:

package org.franca.examples
interface ExampleInterface {

// this interface can be globally accessed by the FQN
// org.franca.examples.ExampleInterface

}

5.8 Fully qualified names, packages, and multiple files 49

Tag Description

@description A comment with this tag contains a description of the documented
interface or datatype element. Typically, the string content of this
tag will be used for generated documentation.

@author This tag specifies the author of the documented element.

@deprecated This tag is used to mark the documented element as deprecated.
The string content should point out a better solution which can be
used in order to avoid using this element.

@source−uri This tag can be used to point to an URI which specifies some kind
kind of source information for this element. E.g., if an interface
has been created by transformation from a D-Bus introspection file,
the source URI could refer to the original D-Bus XML file.

@source−alias This tag can be used in addition to @source−uri for specifying source
elements for the corresponding Franca element.

@see A comment with this tag specifies a further reading or any other
kind of semantic reference.

@experimental An element marked with this tag is not a stable part of the interface
definition.

@details This tag is deprecated, it will be removed in a future version. The
@description tag should be used instead.

@param This tag is deprecated, it will be removed in a future version.
Instead, the arguments of methods and broadcasts should be docu-
mented using the @description tag for the corresponding arguments.

@high−volume This tag is deprecated, it will be removed in a future version.
Specific information related to performance and QoS aspects should
be modeled using Franca deployment models.

@high−frequency This tag is deprecated, it will be removed in a future version.
Specific information related to performance and QoS aspects should
be modeled using Franca deployment models.

Table 5.3: List of available tags for structured comments in Franca IDL.

50 Chapter 5. Franca IDL Reference

5.8.3 Imports and namespace resolution

If elements in one Franca file need elements from another file, they can reference the latter
only if a corresponding import statement is provided. There are two kinds of imports.
Model imports will import all visible top-level elements in the imported file. However, these
elements have to be referenced with their absolute FQN.

package org.franca.examples.demo

// model import
import model ”basic types.fidl”

interface ExampleInterface {
// ...

}

Namespace imports will import all visible elements in the given namespace of the
imported file. These elements can be referenced with a FQN which is relative to the given
namespace.

package org.franca.examples.demo

// namespace import
import org.franca.examples.demo.∗ from ”basic types.fidl”

interface ExampleInterface {
// ...

}

6. Franca Deployment Models

Franca deployment models offer the possibility to enhance Franca IDL interface specifi-
cations with additional information. This is a way to ensure that Franca IDL interfaces
contain the core information needed to describe the semantics of APIs. All additional
information is stored in some deployment model.

Figure 6.1 shows how Franca supports the various artifacts which have to be described
when defining software architectures. The base elements are interface definitions. Those
are completely supported by the Franca IDL. All other architecture artifacts are based on
these interface definitions, among them:

• interface instances or ports,
• components like servers providing interface instances, as well as clients requiring

interface instances,
• architectural layers where these components live,
• and the actual transport layer properties with aspects like serialization, encoding or

quality of service.

This information is typically supported by Franca’s configurable deployment models.
However, Franca deployment models will not completely replace architecture definition
languages (ADLs) or UML models. Instead, deployment models provide a means to store
all information which is directly related to Franca interfaces. The deployment information
usually refines the interfaces defined in Franca IDL.

Contents of Franca deployment models are related to the implementation of the interfaces
on a target platform and the actual deployment of these interfaces on the platform. Some
examples for this kind of data:

• How are the data types encoded on the target platform (e.g., endianness, padding)?
• Are calls blocking or non-blocking?
• How can the instances of an interface be found and addressed (i.e., service discovery)?
• Which quality-of-service promises are valid?

The section Guidelines for adding new features to Franca IDL (§3.5) in the Concepts (§3)
chapter provides some guidelines for deciding whether new features belong to the Franca

52 Chapter 6. Franca Deployment Models

Figure 6.1: Architecture and interface artifacts and how Franca supports their definition.

IDL itself or to the deployment model.

The actual information in a deployment model depends heavily on the target IPC
framework. Therefore, there is no generic deployment model (on a similar abstraction level
as Franca IDL itself). Instead, the properties of the actual deployment model for the target
platform can only be defined with the target platform in mind. This requires a flexible
deployment modeling language which can be used to define the specification of the required
deployment information as well as the actual property values for the concrete interfaces
defined with Franca IDL.

6.1 Deployment model concepts

This section explains some basic concepts of Franca deployment models.

6.1.1 Deployment specifications and definitions

An interface defined with Franca IDL is independent of any target platform. Some code
generator will be used to map this interface onto a real target platform, e.g., generating
C++ classes and their implementations in order to implement the interface on a system
were components are connected with D-Bus or another IPC mechanism.

In many cases, this generator will need additional information, which does not belong
into the IDL definition. This information will be stored in an instance of Franca’s deployment
models. In order to do this, a separate Franca Deployment Language is available, which
consists of two parts:

• specification of deployment properties (done only once per deployment target platform)
• definition of actual values for deployment properties (done for every Franca interface

which has to be deployed on the target platform)

Figure 6.2shows how deployment specifications, deployment definitions and the actual
Franca IDL interfaces are related. A specification is created for a given target platform (or
code generator for this platform). Based on this specification, one deployment definition
has to be provided for each actual Franca IDL interface. The specification describes which
additional information has to be provided for an interface on this target platform - the
definition lists this information for one concrete interface.

It is important to remember here that each Franca IDL interface can be deployed

6.1 Deployment model concepts 53

Figure 6.2: Franca deployment: specifications, definitions and actual interfaces.

on many different target platforms. Thus, there might be many deployment definitions
(based on different deployment specifications) for the same interface. This is essentially the
advantage of the IDL/deployment separation: The core part of each interface definition
(the Franca IDL part) can be re-used in multiple environments.

6.1.2 Deployment properties

Properties are the basic units of information in deployment models. Each specification
defines which properties are available by defining their name, their type, their host and some
flags (e.g., a default value for the property, or if the property is mandatory or optional).
Properties can be defined freely; there are no predefined properties. This ensures maximum
flexibility when writing specifications.

The following example shows one property as part of a deployment specification. The
property is named PerformanceImpact ; it is located at the host methods. The property
is of enumeration type, with enum values none, medium and substantial. It has the flag
optional.

specification MySpec {
for methods {

PerformanceImpact: {none, medium, substantial} (optional);
}

}

The host attribute of a property defines at what locations in a definition this property
applies; this is a similar concept as pointcuts in aspect-oriented programming (but there
are also some differences to that concept).

There is a variety of hosts; Table 6.1 and Table 6.2 and Table 6.2 list those related
to Franca interfaces. Note that the properties for some hosts will be applied to several
locations of a Franca IDL interface.

In a deployment definition for a given specification, concrete values have to be assigned
to each property. Depending on the host definition and the optional/default flags on the
specification side, properties will be mandatory at certain locations. This will be enforced
by the deployment model editor and the underlying validation checks.

54 Chapter 6. Franca Deployment Models

Host Description Impacted Franca
IDL elements

Example

interfaces Properties related to whole
Franca IDL interfaces (but
not its instances)

interface locally or globally
accessible?

type collections Properties related to Franca
type collections

typeCollection type visibility

attributes Properties related to at-
tributes of a Franca IDL in-
terface

attribute flag: read-only or
read/write?

methods Properties related to meth-
ods of a Franca IDL interface

method calling style (block-
ing / non-blocking)

broadcasts Properties related to broad-
casts of a Franca IDL inter-
face

broadcast priority

arguments Properties related to the
arguments of methods and
broadcasts

input and out-
put arguments
of method, out-
put arguments of
broadcast

flag: is optional?

Table 6.1: Franca deployment: Property hosts related to interface elements.

6.1 Deployment model concepts 55

Host Description Impacted Franca IDL el-
ements

Example

strings Properties related to
string variables

all entities with pre-
defined type String:
attribute members, ar-
guments of method and
broadcast, struct fields

encoding (ASCII,
Unicode, ...)

integers Properties related to all
integer numbers

all entities with prede-
fined type Int8, UInt8,
...: attribute members, ar-
guments of method and
broadcast, struct fields

allowed range, little
vs. big endian

floats Properties related to all
float numbers

all entities with pre-
defined type Float or
Double: attribute mem-
bers, arguments of
method and broadcast,
struct fields

encoding (ISO...)

numbers Properties related to in-
teger or float numbers

all entities of integers and
floats combined

alignment

booleans Properties related to
booleans

all entities with prede-
fined type Boolean

various flags (op-
tional...)

byte buffers Properties related to
byte buffer variables

all entities with prede-
fined type ByteBuffer

maximal length of a
buffer

Table 6.2: Franca deployment: Property hosts related to primitive data types.

56 Chapter 6. Franca Deployment Models

Host Description Impacted Franca IDL
elements

Example

structs Properties related to struct
definitions

struct alignment / padding

struct fields Properties related to fields
of struct definitions

fields of struct alignment / padding

unions Properties related to union
definitions

union flag for tag generation

union fields Properties related to fields
of union definitions

fields of union explicit tag for each
field

enumerationsProperties related to enu-
meration definitions

enumeration flag: generate enum
values?

enumerators Properties related to enu-
merators

values of enumeration renaming, filtering

arrays Properties related to array
definitions

array alignment, maximum
length

typedefs Properties related to type-
defs

typedef enriching type defini-
tions

Table 6.3: Franca deployment: Property hosts related to user-defined data types.

6.2 Deployment specifications 57

Host Description Impacted Franca
IDL elements

Example

providers Properties of interface providers n/a process name, deploy-
ment node

instances Properties related to instances
of a Franca IDL interface (e.g.,
port)

n/a network address of
the interface instance

Table 6.4: Franca deployment: Property hosts related to providers and interface instances.

6.1.3 Providers and interface instances

Most properties will be attached to concrete locations of Franca interfaces, like methods,
arguments or similar entities. However, the scope of the deployment concept usually
contains components which provide interfaces (i.e., servers). Moreover, interface providers
might offer several interfaces and even multiple instances of the same interface. Deployment
models often have to support this, e.g., in order to define network addresses on the interface
instance level.

These concepts are supported by Franca deployment models by the host definitions
providers and instances. Table 6.4 lists the property hosts related to providers and interface
instances.

6.2 Deployment specifications

This section explains how deployment specifications for a concrete target platform are
defined.

6.2.1 Introductory example

Let’s start with a concrete deployment example. The following deployment model contains
both the specifiation part and the definition part. In the specification, the two properties
CallSemantics and IsOptional are introduced. Both are defined for the methods host, which
indicates that those properties will be relevant for all methods defined in a Franca IDL
interface.

The property CallSemantics has an enumeration type with the constant values syn-
chronous and asynchronous. As there is no further flag here, the property is mandatory and
has to be set for all methods under the given specification MySpec. The property IsOptional
of boolean type is also mandatory. Using this specification, it has to be specified for every
method of a Franca IDL interface if the method is called synchronously or asynchronously
(property CallSemantics) and if the method has to be implemented by the server or not
(property IsOptional).

import ”PlayerAPI.fidl”

specification MySpec {
for methods {

CallSemantics: {synchronous, asynchronous};
IsOptional: Boolean;

}

58 Chapter 6. Franca Deployment Models

}

define MySpec for interface PlayerAPI {
method setActivePlayer {

CallSemantics = synchronous
IsOptional = false

}
}

The second part of the introductory example shows the application of the specification
MySpec for the Franca interface PlayerAPI. In order to write this deployment definition,
an import statement has to be given at the beginning which includes the fidl-file which
contains the interface definition.

The example interface PlayerAPI contains exactly one method. In the deployment
definition, we now have to enrich this method with the two mandatory properties defined
in the specification. In the example, we define that method setActivePlayer will be called
synchronously and has to be provided by every server offering the interface PlayerAPI.

Note: For typical applications of the deployment modeling concept, specifications and
definitions will be stored as separate file. This is because usually the specification will be
owned by a platform architect or a framework team, whereas the actual definitions will be
created by the responsible architects and developers, who also define the actual interfaces
with Franca IDL.

6.2.2 Deployment specification for interfaces

This section provides a more elaborate example of deployment specifications. It shows
the full range of types, single types vs. arrays. It also shows how to define default values
for properties. Note that the actual names of properties (and all their attributes) can be
freely chosen by the specification designer. There are no predefined properties. However,
the designer has to ensure that property names will be unique (the deployment editor will
take care of this by validating the property names online). For the detailed restrictions
regarding property names refer to section Property naming restrictions (§6.2.6).

The specification name is fully qualified in order to allow a hierarchical organization of
specifications. Each property can be either defined as single value or as array. For example,
property Range has been defined as array of integers, and the default value is an array
which contains the values 1, 2 and 3. Property Groups is an array of enumeration values
g1, g2, g3 and g4. Thus, values for this property might be an arbitrary subset of this
enumeration.

specification org.deployspecs.SampleDeploySpec {
for methods {

CallSemantics: {synchronous, asynchronous} (default: asynchronous);
Priority: {low, medium, high} (default: low);
IsOptional: Boolean;
Range: Integer[] (default: {1, 2, 3});

}

for attributes {
IsReadOnly: Boolean (default: false);
Groups: {g1, g2, g3, g4}[];

}

for strings {
Encoding: {utf8, unicode};

6.2 Deployment specifications 59

}
}

The example shows some properties for which reasonable default values have been
defined. All properties which are neither optional nor have defaults are mandatory. Those
properties must be defined at all impacted locations of the deployment definition (the
locations are determined by the host of the property).

6.2.3 Providers and interface instances

This is a specification for the deployment of IP-based IPC stacks. This is just an example,
an actual deployment specification for IP-based stacks will have to take into account more
platform-specific details.

specification org.deployspecs.IPBasedIPC {
for providers {

ProcessName: String;
}

for instances {
IPAddress: String;
Port: Integer (optional);
AccessControl: { local, subnet, global } (default: global);

}
}

The interesting part of this example is the usage of the property hosts providers and
instances. Those properties will not be related to actual entities of a Franca IDL interface,
but to some additional architecture-related parts instead. This is depicted by the outer
ring in the overview diagram at the beginning of this chapter.

6.2.4 Specification Inheritance

Specifications can inherit from base specifications. Example:

specification org.deployspecs.DerivedSpec extends org.deployspecs.IPBasedIPC {
// put specification details here

}

The properties defined in a specification and its base specification will be aggregated.
This applies recursively, such that a specification will consist of an accumulation of all its
own properties and the properties of all base specifications along the chain.

This concept allows to build a hierarchy of specifications (i.e., a specification ontology).

6.2.5 The property datatype ’Interface’

Each property defined in a deployment specification is strongly typed. In the examples
above, the datatypes Boolean, Integer, String and ad-hoc enumerations have been used.

In some use cases, it is necessary to establish relationships between Franca interface
definitions. E.g., in a large-scale system each functional interface might have a corresponding
diagnostics interface providing additional functionality used for testing and observation.

The following example shows how a property with the datatype Interface is defined. In
the example, for each Franca interface the Master property can be set in order to define
another interface which is the master of this interface. The example also defines a specific
interface reference &org.example.idl.Controller as a default value.

60 Chapter 6. Franca Deployment Models

specification org.deployspecs.Channel {
for interfaces {

Master: Interface (default: &org.example.idl.Controller);
}

// put more specification details here
}

Note that the Interface datatype allows to refer to interface definitions, not interface
instances. If you are looking for a way to establish relations between interface instances,
the manages concept might be a proper solution (see section Interfaces managing inter-
faces (§5.5.5)).

6.2.6 Property naming restrictions

Property are identified by their name, which is defined in the deployment specification. As
each property can be used in deployment definitions specifically depending on the property
host, their names are in general not required to be unique. For example, the following
specification is valid, although there are properties with the same name:

specification SpecWithDuplicates {
for structs {

Property1: Integer;
}
for arguments {

Property1: String;
}

}

This is valid because in a deployment definition the property can be identified from
the context. The property type may be different as in the example or equal (however, the
property type enumeration is an exception from this rule, see below).

The following counterexample shows a specification which is not valid, because the two
properties with the same name cannot be distinguished from the context:

specification InvalidSpecWithDuplicates {
for numbers {

Property2: Integer; // invalid
}
for floats {

Property2: String; // invalid
}

}

The hosts numbers and floats overlap, i.e., in a deployment definition it cannot be
decided which of the two properties Property2 is referred to. Thus, validation errors would
be shown for this deployment specification. In this case, a meaningful interpretation could
be defined for the special case of equal property types. However, as this would increase the
redundancy of the specification the validation will reject it even if the property types are
equal.

The following list gives all restrictions in place for properties with same name.
• Properties with same name must not have the same property host.
• Properties with same name must not have property hosts with overlapping scope.

Example: arrays, numbers, integers floats, booleans and strings are mutually exclusive.
Another example: struct fields and union fields are mutually exclusive.

6.3 Deployment definitions 61

• A property with a property host which can be used in multiple contexts cannot be
combined with another property with the same name and a different host, even if
the scopes of the two hosts do not overlap. Example: A property with host numbers

blocks defining another property with the same name and host structs, because the
numbers-property can be used in multiple contexts.
• Properties with same name and ad-hoc enumeration types are not allowed.

The reason for the two latter restrictions is more subtle than for the other ones. Although
the property might be identified uniquely by its context, the resulting Java code for
the generated PropertyAccessor class would be ambiguous or not correct. See section
PropertyAccessor classes (§6.4.1) for details on the generated Java classes.

6.3 Deployment definitions

This section describes how deployment definitions are created based on deployment specifi-
cations.

6.3.1 Interface deployment

This section provides a more elaborate example of deployment definitions for a Franca
interface. The specification for this deployment is located in the separate file SampleDe-
ploySpec.fdepl, which is imported in the first line of the example. The second line is another
import statement; it imports the actual France IDL interface which should be refined by
the deployment data in the remaining parts of this file.

The deployment definition for the interface PlayerAPI explicitly references the specifi-
cation SampleDeploySpec. You should compare this example with the specification from
section Deployment specification for interfaces (§6.2.2).

import ”deployspecs/SampleDeploySpec.fdepl”
import ”../franca/demo1.fidl”

define SampleDeploySpec for interface org.franca.examples.demo.PlayerAPI {
attribute activePlayer {

IsReadOnly = true
Groups = { g1, g2 }

}

method setActivePlayer {
Priority = medium
IsOptional = false

}

method getPlayerInfo {
CallSemantics = synchronous
Priority = low
IsOptional = true

out {
name {

Encoding = utf8
}
description {

Encoding = unicode
}

}

62 Chapter 6. Franca Deployment Models

}
}

Note that the structure of the deployment definition resembles the structure of the
interface definition in Franca IDL itself.

6.3.2 Deployment of interface providers

This section provides a detailed example of deployment definitions for interface providers
and interface instances. The specification for this deployment is again located in the
separate file SampleDeploySpec.fdepl, which is imported in the first line of the example
(same as in previous example). The second line is another import statement; it imports
the actual France IDL interface which will be referred to by the deployment data in the
remaining part of this file.

The deployment definition for the provider ExampleServer explicitly references the
specification SampleDeploySpec. If you compare this with the specification from section
Deployment specification for interfaces (§6.2.2), you will not find any property declarations
for hosts providers or instances. These declarations are inherited from the base specification
IPBasedIPC. See section Specification Inheritance (§6.2.4) for the inheritance feature of
Franca deployment models.

import ”deployspecs/SampleDeploySpec.fdepl”
import ”../franca/demo1.fidl”

define SampleDeploySpec for provider ExampleServer {
ProcessName = ”server1.exe”

instance org.franca.examples.demo.PlayerAPI {
IPAddress = ”192.168.1.50”
Port = 8765
AccessControl = subnet

}

instance org.franca.examples.demo.PlayerAPI {
IPAddress = ”192.168.1.50”
Port = 7654

}
}

In the example definition above, the component ExampleServer is defined which provides
two instances of the same Franca interface PlayerAPI. The instances can be addressed
with the same IP address, but different port numbers. The first instance of this interface
can be accessed by clients in the same subnet only. The second instance can be accessed
globally, because this value has been defined as default in the IPBasedIPC -specification
and hasn’t been overridden in the example above. This is just an example which shows the
difference between actual interface definitions and their instances.

6.3.3 Overwriting deployment properties

In general, each user-defined datatype from a type collection or an interface has to be
deployed once. I.e., a deployment definition for the type collection or interface has to
contain a section for the data type, containing at least the mandatory deployment properties
and (if desired) some of the optional properties.

There are various locations where a user-defined datatype might be used in a type
collection or an interface definition:

6.3 Deployment definitions 63

• as type of an attribute
• as type of an in/out argument of a method
• as type of an out argument of a broadcast
• by another datatype (via containment or inheritance)
• as type of a constant

By default, all these usages of a deployed datatype do not require any further deployment
data aside from the deployment definition mentioned above. This is usually a proper
approach, as it ensures that the deployment of a user-defined type is the same for all its
usages.

However, for some usecases it is needed to overwrite the initial datatype deployment
and provide different deployment data depending on how the datatype is used. Currently
this overwriting of deployment properties is supported for compound-like datatypes, i.e.,
for struct and union types. The remainder of this section will explain how overwriting can
be used when creating deployment definitions.

The overwriting-feature is available since Franca 0.10.0.

Example using normal deployment without overwrites

This section will introduce a running example which will be used to explain all variants of
the overwriting-feature. We will start with a simple deployment specification:

specification examples.SimpleSpec {
for strings {

Encoding : {utf8, utf16, unicode} (default: utf8);
}

}

This specification contains only one property, which is applied to string types. It can
be used to define string encodings, which can be one of utf8, utf16 and unicode. Note that a
default value has been defined, which relieves us of defining a value of the Encoding property
for each usage of datatype String.

In the remainder of this section, we will deploy different parts of the following Franca
interface:

interface MediaPlayer {
struct Person {

String firstname
String surname

}

struct TrackInfo {
String title
String album
Person composer
Person interpret

}

attribute TrackInfo currentTrack

method play {
in { TrackInfo track }

}
}

64 Chapter 6. Franca Deployment Models

The interface defines two struct datatypes (and one is used by the other), as well as
one attribute and a method. Both the attribute and the method are using the struct type
TrackInfo.

A deployment definition for this interface could look like the following example. For
the struct types Person and TrackInfo, some elements of type String will not be deployed
with the default Encoding utf8 (which is defined in the deployment specification), but with
Encoding unicode instead.

define examples.SimpleSpec for interface examples.MediaPlayer {
struct Person {

firstname { Encoding = unicode }
surname { Encoding = unicode }

}
struct TrackInfo {

album { Encoding = unicode }
}

}

This is the standard way of using deployment definitions. In the next section we will
explain how overwrites can be used.

Example using deployment overwrites: Attribute

In some environments, it might be necessary to use a different encoding for the album

element of the TrackInfo struct type, but only when used as a Franca attribute. This
can be defined by overwriting the deployment properties given when the TrackInfo struct
was deployed. In the example, the Encoding property of the struct element album will be
overwritten with utf16.

define examples.SimpleSpec for interface examples.MediaPlayer {
attribute currentTrack {

#struct {
album { Encoding = utf16 }

}
}

}

The syntax for overwriting a struct type deployment is the hash-character followed
by the keyword struct, resulting in #struct. This and all following deployment overwrite
examples will work also with union-types, using the keyword #union. The overwrite keyword
always refers to the type of the containing deployment element. In the example, this is the
attribute currentTrack.

Table 6.5 lists the different ”layers” of values for property Encoding in the example above.

Example using deployment overwrites: Method

Overwriting deployment properties for elements of struct and union types is not only
possible for attribute types, but also for arguments of methods and broadcasts. The
following example shows how to overwrite the deployment of the album element of the
TrackInfo struct type, but only when used as the type of the in argument track of method
play. In the example, the Encoding property of the struct element album will be overwritten
with utf16.

define examples.SimpleSpec for interface examples.MediaPlayer {
method play {

in {
track {

6.3 Deployment definitions 65

Layer Source Value

Default value specification utf8 overridden by...

Standard deployment deployment for TrackInfo unicode overwritten by...

Deployment overwrite deployment for currentTrack utf16 actual value!

Table 6.5: Franca deployment overwrites: Layered values in example.

#struct {
album { Encoding = utf16 }

}
}

}
}

}

Example using deployment overwrites: Nested struct

If struct and union types are built from other struct or union types, it is also possible to
overwrite the deployment properties of the child structs. The following example overwrites
the Encoding properties of the elements firstname and surname of the Person struct type, but
only if it is used as type of element composer of the TrackInfo struct type.

define examples.SimpleSpec for interface examples.MediaPlayer {
struct TrackInfo {

title { Encoding = utf8 }
album { Encoding = utf8 }
composer {

#struct {
firstname { Encoding = unicode }
surname { Encoding = unicode }

}
}

}
}

Note the difference between the keywords struct (without hash) and #struct (with hash).
The former starts the original deployment of struct type TrackInfo, the latter triggers the
overwriting of its element composer. It is also possible to overwrite struct types which are
more deeply nested in hierarchies of struct and union types.

Example using deployment overwrites: Nested struct in attribute

The following example shows overwriting of nested structs in the context of attributes.
The same could be done for methods or broadcasts.

define examples.SimpleSpec for interface examples.MediaPlayer {
attribute currentTrack {

#struct {
composer {

#struct {
firstname { Encoding = unicode }

66 Chapter 6. Franca Deployment Models

surname { Encoding = unicode }
}

}
}

}
}

In the above example, all elements of struct type TrackInfo except its element composer

are deployed in a standard way. The deployment for element composer is overwritten and
set to property values specifically for the context of the attribute currentTrack.

6.4 Support for accessing deployment properties

It is important that deployment properties can be accessed easily during code generation,
testcase generation and other post-processing steps. Franca provides some infrastructure
for retrieving the deployment data attached to various interface entities easily.

6.4.1 PropertyAccessor classes

Deployment properties will always be retrieved for a given element of a Franca IDL model.
E.g., if the code generator implementation needs to access all information available for
an actual FAttribute (§8.4.7) object, it shouldn’t be necessary to traverse the deployment
model, find all properties for this attribute object, check if there are defaults for some of
these properties, type-check and cast the actual values of the properties and much more.
In order to encapsulate this functionality and just offer a method to get a property value
for a given Franca IDL model element, Franca provides a PropertyAccessor class, which
does all the steps mentioned above.

The actual methods provided by a PropertyAccessor class will depend on the underlying
deployment specification (§6.2). As this specification is part of the deployment language
and will be changed by the user, the PropertyAccessor Java class will be generated by the
Franca infrastructure while editing specifications with the Eclipse IDE.

6.4.2 PropertyAccessor example

The following simple example shows a deployment specification:

specification org.deployspecs.SimpleSpec
{

for attributes {
WillChangeOften: Boolean (optional);

}
}

From this user-defined specification Franca will generate the following PropertyAccessor
class:

/∗∗∗
∗ This file has been generated by Franca’s FDeployGenerator.
∗ Source: deployment spec ’org.deployspecs.SimpleSpec’
∗∗∗/
package org.deployspecs;

import org.franca.core.franca.FAttribute;
import org.franca.deploymodel.core.FDeployedInterface;

6.4 Support for accessing deployment properties 67

/∗∗
∗ Accessor for deployment properties for ’org.deployspecs.SimpleSpec’ specification
∗/

public class SimpleSpecInterfacePropertyAccessor
{

private FDeployedInterface target;

public SimpleSpecInterfacePropertyAccessor (FDeployedInterface target) {
this.target = target;

}

public Boolean getWillChangeOften (FAttribute obj) {
return target.getBoolean(obj, ”WillChangeOften”);

}
}

The method getWillChangeOften() of the generated class SimpleSpecInterfaceProperty-
Accessor should be used to get the property value WillChangeOften for a given attribute.
The PropertyAccessor will retrieve the value of this property (either the actual value or
the default) and will return it in a type-safe way. This is a convenient technique to get
property data from deployment models.

6.4.3 Creating InterfacePropertyAccessors

In order to instantiate a specific InterfacePropertyAccessor object, an FDInterface object
has to be retrieved from a deployment model. Deployment models are represented by
an FDModel object. The helper class FDModelExtender provides a means to retrieve all
interface deployment definitions of an FDModel.

The following Java snippet loads a deployment model from file system, creates a model
extender in order to retrieve all FDInterface objects and creates the actual InterfaceProp-
ertyAccessor object for each of them.

FDModel fdmodel = FDModelHelper.instance().loadModel(inputfile);
FDModelExtender fdmodelExt = new FDModelExtender(fdmodel);
for(FDInterface fdi : fdmodelExt.getFDInterfaces()) {

FDeployedInterface deployed = new FDeployedInterface(fdi);
SimpleSpecInterfacePropertyAccessor accessor =

new SimpleSpecInterfacePropertyAccessor(deployed);
// use accessor, e.g., accessor.getWillChangeOften()

FInterface api = fdi.getTarget();
// call downstream tool (e.g., code generator) for FInterface ’api’

}

Note how the actual Franca IDL interface can be accessed from each FDInterface (i.e.,
the deployment specification of an interface) by using the getTarget() property.

6.4.4 ProviderPropertyAccessors

For properties related to providers and interface instances (§6.1.3), another PropertyAccessor
will be generated, whose name is created as concatenation of the deployment specification’s
name and the suffix ProviderPropertyAccessor.

The creation and usage of ProviderPropertyAccessors is similar to the usage of Inter-
facePropertyAccessors as described above.

68 Chapter 6. Franca Deployment Models

6.4.5 Example project

The example project org.franca.examples.deploy contains two example generators in the
package

org.franca.examples.deploy.generators:
• ExampleHppGeneratorWithDeployment : This example code generator shows how

deployment information can be accessed during traversal of an actual Franca IDL
interface.
• ExampleRuntimeConfigGenerator : This example generator shows how deployment

information can be accessed, which is not directly linked to an actual Franca IDL
interface (e.g., interface providers and instances).

III

7 Franca connectors . 71
7.1 Franca support for D-Bus Introspection
7.2 Franca support for OMG IDL
7.3 Franca support for Google Protobuf

Part Three

7. Franca connectors

The integration of Franca with other IDLs or (more generally:) models is supported by
Franca connectors. A connector is yet another Eclipse plugin, which offers means to load
and save models of the other IDL and transformations to and from Franca IDL models.

This chapter lists the connectors that are currently supported by Franca out of the
box. The connectors can be selected during installation by choosing an additional feature
provided by the Franca update site.

Note that most connectors will require additional plugins which provide the model or
API (or both) for the 3rd party IDL. Thus, for installing some of those connector features,
it may be necessary to install the required plugins first.

7.1 Franca support for D-Bus Introspection

D-Bus Introspection is an XML format which defines D-Bus interfaces. More details on
the D-Bus IPC and D-Bus Introspection can be found at freedesktop.org.

The Franca connector plugin for D-Bus is called org.franca.connectors.dbus. It requires
the plugin model.emf.dbusxml, which is available as open-source project dbus-emf-model on
Eclipse Labs. An update site is available for dbus-emf-model (will not open in the browser,
only in Eclipse IDE):

http://kbirken.github.io/dbus-emf-model/releases/
If you install the Franca D-Bus support Feature via Help > Install New Software..., the

model.emf.dbusxml plugin will be installed automatically from this update site.

7.2 Franca support for OMG IDL

Describe OMG IDL connector

7.3 Franca support for Google Protobuf

Describe Google Protobuf connector

http://www.freedesktop.org/wiki/Software/dbus
https://github.com/kbirken/dbus-emf-model
https://github.com/kbirken/dbus-emf-model
http://kbirken.github.io/dbus-emf-model/releases/

IV
8 Franca Model API . 75
8.1 How can Franca models be accessed programmatically?
8.2 Franca Model API Reference
8.3 Utility classes for Franca model access
8.4 API for Franca models, interfaces and type collections
8.5 API for Franca types
8.6 API for Franca contracts
8.7 API for Franca structured comments

9 Building generators with Franca 87
9.1 Introduction
9.2 Traversing Franca models
9.3 Accessing Franca deployment models

10 Building transformations to/from Franca 93
10.1 Introduction
10.2 Transforming Franca to other models
10.3 Transforming other models to Franca

11 Franca extensions . 97
11.1 Additional validators
11.2 Providing deployment specifications

12 List of External Links 101

Part Four

8. Franca Model API

8.1 How can Franca models be accessed programmatically?

The Franca model infrastructure is based on the Eclipse Modeling Framework (EMF). The
Franca core model (§3.1.1) is implemented as a EMF ecore-model. EMF provides a tool to
generate a Java API from this ecore-model.

In Franca, this Java API is provided by the org.franca.core Eclipse plugin. The Java
interfaces for the API are located in package org.franca.core.franca.

For accessing Franca deployment models programmatically, we recommend to use the
helper classes provided by Franca and the classes automatically generated from deployment
specifications. Thus, we do not include documentation for the EMF ecore-model API of
deployment models here. See section Support for accessing deployment properties (§6.4)
for more details about this topic.

8.2 Franca Model API Reference

8.2.1 General remarks

For each concept of Franca IDL, there is a Java interface in the API. As all these concepts
have names which are quite common in the software architecture domain, all these API
interfaces are prefixed with the letter ”F” (for Franca). Examples: FInterface, FAttribute,
FMethod.

The following properties are common for most of these entities:

• name: most of the Franca API entities have a name.
• comment : most of the Franca API entities can have a structured comment. The

structured comment (of type FAnnotationBlock) is optional and might contain 0..*
annotations.

8.2.2 FrancaFactory and FrancaPackage

The API offers a singleton class FrancaFactory, which should be used to create new instances
of any model entities. See information about EMF to find out how the factory works. The

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

76 Chapter 8. Franca Model API

second singleton class of the API is the FrancaPackage, which does the initialization of the
model and provides meta-information like ids and others.

Here is a Java code snippet which illustrates how a Franca model element can be created
using the factory.

FInterface api = FrancaFactory.eINSTANCE.createFInterface();
api.setName(”MediaPlayer”);
// and so on

8.3 Utility classes for Franca model access

Accessing the Franca EMF model directly may be tedious, depending on the part of the
model which should be traversed. Franca includes a couple of utility classes which simplify
extracting data from a Franca model. This section describes those utility classes.

8.3.1 Evaluating FExpression objects with the ExpressionEvaluator

The ExpressionEvaluator will be described here.

8.3.2 Converting integer types with the IntegerTypeConverter

Some downstream tools only process primitive integer types and cannot handle ranged
integer types. Franca provides the helper class IntegerTypeConverter which can do conversions
from ranged integer types to predefined basic integer types and vice versa. The following
code snippet shows how to convert ranged integer types to primitive integers:

public void generateCode(FModel model) {
boolean haveUnsigned = true;
IntegerTypeConverter.removeRangedIntegers(model, haveUnsigned);
generateCode(model);

}

The function removeRangedIntegers will choose the smallest primitive type which can still
represent the given number range. Therefore, for this conversion from ranged integers to
predefined integers it can be configured if in the target type system unsigned types are
available or not. E.g., for converting a Franca model towards a Java platform the usage of
unsigned types can be disallowed.

The class IntegerTypeConverter provides a second static member function converting
primitive integer types to ranged integers. There is a fixed mapping from each primitive
type to the proper range of the ranged integer. This is a code example showing how to use
this conversion function:

FModel model = ...;
IntegerTypeConverter.removePredefinedIntegers(model);
processModel(model);

This class can be used as a preprocessor for existing code generators or transformations.
For both utility functions, the input model is transformed in-place, i.e., its FTypeRef
objects are converted directly.

8.4 API for Franca models, interfaces and type collections

Some details of the ModelAPI reference section might be outdated.

8.4 API for Franca models, interfaces and type collections 77

This section describes the FModel class, which is the root class for each Franca model.
It also describes FTypeCollection as well as FInterface and all its elements (e.g., attributes,
methods and broadcasts. See the section Interface definition (§5.5) in the Franca User
Guide for detailed information about interfaces.

8.4.1 Class FModel

The root class of a Franca model. It contains a list of interfaces and a set of type collections.
Other Franca models might be referenced by the ’imports’ attribute. The name of a Franca
model is the package declaration.

• EString name: The package declaration for this model file.
• List<Import (§8.4.9)> imports: The list of import statements for this model.
• List<FInterface (§8.4.3)> interfaces: The list of interfaces which are defined in this

model.
• List<FTypeCollection (§8.4.2)> typeCollections: The list of type collections in this

model.

8.4.2 Class FTypeCollection

A collection of Franca type definitions. The type collection is named and should be
versioned (optional). Types defined by a FTypeCollection (§8.4.2) can be referenced from
other FTypeCollection (§8.4.2)s and FInterface (§8.4.3)s.

• EString name (optional): The name of this element. Inherited from base class
FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FVersion (§8.4.8) version (optional): The version of this entity. The Apache ma-

jor/minor scheme is applied.
• List<FType (§8.5.1)> types: The list of Franca types defined in this entity.

8.4.3 Class FInterface

This class represents a Franca interface definition. Interfaces are named and should be
versioned (optional). Types defined as part of this interface can not be referenced by other
FTypeCollection (§8.4.2)s and FInterface (§8.4.3)s. This type visibility differs from the
types defined as part of FTypeCollection (§8.4.2)s.

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FVersion (§8.4.8) version (optional): The version of this entity. The Apache ma-

jor/minor scheme is applied. Inherited from base class FTypeCollection (§8.4.2).
• List<FType (§8.5.1)> types: The list of Franca types defined in this entity. Inherited

from base class FTypeCollection (§8.4.2).
• List<FAttribute (§8.4.7)> attributes: The list of attributes defined for this interface.
• List<FMethod (§8.4.6)> methods: The list of methods defined by this interface.
• List<FBroadcast (§8.4.4)> broadcasts: The list of broadcasts defined by this interface.
• FContract (§8.6.1) contract (optional): The contract of this interface. A contract

specifies the semantics of the interface, e.g., the order of the events across this
interface.
• FInterface (§8.4.3) base (optional): The base interface. Franca allows single inheri-

tance.

78 Chapter 8. Franca Model API

• List<FInterface (§8.4.3)> managedInterfaces: The list of interfaces managed by
this interface. The interface will provide methods for discovery and handling of the
runtime instances of the managed interfaces. The actual implementation depends on
the specific target runtime platform.

8.4.4 Class FBroadcast

The definition of a Franca broadcast as part of an FInterface. See the Franca IDL chapter
in the Franca User Guide for very detailed information on broadcast semantics.

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• List<FArgument (§8.4.5)> outArgs: The parameters of this broadcast.
• EString selective (optional): A flag which indicates that this broadcast will not always

be send to all clients. The property will be set to a concrete string if the flag is set
(e.g., the string ”selective”). Do not rely on the actual value of this string. If the
property is null, the flag isn’t set.

8.4.5 Class FArgument

This class represents an argument (aka parameter) for a FMethod (§8.4.6) or FBroadcast.
For methods, this might be an input or output argument. For FBroadcast (§8.4.4)s, there
are only output arguments (i.e., from server to client).

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FTypeRef (§8.5.3) type: The actual type of this typed element. The type might be

predefined or user-defined. Inherited from base class FTypedElement (§8.6.13).
• EString array (optional): If the typed element is an implicit array definition, this

property will be set to a string (e.g., the string ’[]’). If the typed element is a single
value (not an array), this property will be null. Do not rely on the actual value of
the string. Inherited from base class FTypedElement (§8.6.13).

8.4.6 Class FMethod

The definition of a Franca method as part of an FInterface. Methods without out arguments
might have be flagged as ’fireAndForget’. See the Franca IDL chapter in the Franca User
Guide for very detailed information on method semantics.

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• EString fireAndForget (optional): A flag which indicates that this method will be

just a request from client to server without response. The property will be set to a
concrete string if the flag is set (e.g., the string ”fireAndForget”). Do not rely on the
actual value of this string. If the property is null, the flag isn’t set. It can be set only
for methods without output arguments.
• List<FArgument (§8.4.5)> inArgs: The list of input arguments for this method (aka

input parameters).
• List<FArgument (§8.4.5)> outArgs: The list of output arguments for this methods

(aka return values).
• FEnumerationType (§8.5.5) errorEnum (optional): If this property is not null, it

represents a definition of method error codes by referencing an enumeration type

8.5 API for Franca types 79

specified elsewhere. The enumerators of this enumeration type are the error codes
the method might return. The enumeration type referenced here might reference a
base enumeration. If this property is null, check the errors property instead.
• FEnumerationType (§8.5.5) errors (optional): If this property is not null, it represents

a definition of method error codes by explicitly specifying a list of enumerators. These
enumerators are the error codes the method might return. The enumeration type
specified here might reference a base enumeration. If this property is null, check the
errorEnum property instead.

8.4.7 Class FAttribute

The definition of a Franca attribute as part of an FInterface. See the Franca IDL chapter
in the Franca User Guide for very detailed information on attribute semantics and the
flags which can be set for attributes.

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FTypeRef (§8.5.3) type: The actual type of this typed element. The type might be

predefined or user-defined. Inherited from base class FTypedElement (§8.6.13).
• EString array (optional): If the typed element is an implicit array definition, this

property will be set to a string (e.g., the string ’[]’). If the typed element is a single
value (not an array), this property will be null. Do not rely on the actual value of
the string. Inherited from base class FTypedElement (§8.6.13).
• EBoolean readonly (optional): Indicates if this attribute is read-only. If false, clients

are granted write access to the attribute.
• EBoolean noSubscriptions (optional): Indicates if clients can subscribe to update

events for this attribute. If false, subscribing is possible. The reverse logic of this
flag is to ensure a proper default in the IDL: if the keyword ”noSubscriptions” is not
given, subscription is possible.

8.4.8 Class FVersion

The version of this interface or type collection. It is defined according to the Apache
major/minor scheme for interfaces. I.e., a change in the major number indicates a non-
compatible change. It is mandatory to define both major and minor numbers.

• EInt major : The major number of this version specification (e.g., the ”1” in ”1.0”).
• EInt minor : The minor number of this version specification (e.g., the ”0” in ”1.0”).

8.4.9 Class Import

An import declaration. It defines a namespace from some Franca resource, which should
be imported. All elements from other Franca models referenced by this model should be
member of some imported Franca model.

• EString importedNamespace (optional): The namespace which is addressed by this
import.
• EString importURI (optional): The URI of the imported resource.

8.5 API for Franca types

This section describes all API classes needed for Franca type definitions. See the section
Data types (§5.1) in the Franca User Guide for detailed information about defining types
with Franca.

80 Chapter 8. Franca Model API

8.5.1 Class FType (abstract)

This is the base class for all user-defined Franca types. It will never be instantiated directly.
• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.

8.5.2 Class FMapType

The Franca map type (sometimes ”map” is also called ”dictionary”). This is a collection
type which maps objects of a key type to objects of a value type in constant time.
• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FTypeRef (§8.5.3) keyType: The key type which is mapped to the value type. Note:

Some IDLs (e.g. D-Bus Introspection) do not allow complex types as keys. Franca
doesn’t have this restriction.
• FTypeRef (§8.5.3) valueType: The value type of this map. It might be a predefined

or a user-defined type.

8.5.3 Class FTypeRef

This class is a reference to some Franca type. It may be either a primitive type (§5.1.1)
(property predefined or a derived type (e.g., struct, array, map).
• FBasicTypeId predefined (optional): If the referenced type is a predefined type, this

property gives the actual predefined type. If the reference type is a user-defined type,
this property will be null.
• FType (§8.5.1) derived (optional): If the referenced type is a user-defined type, this

property gives the actual complex type definition. If the reference type is a predefined
type, this property will be null.

8.5.4 Enum FBasicTypeId

This enum represents the basic types available in Franca IDL. See section Primitive
types (§5.1.1) in the Franca User Guide for a list of available primitive types and their
semantics.

This enum consists of the following literals: UNDEFINED, INT8, UINT8, INT16,
UINT16, INT32, UINT32, INT64, UINT64, BOOLEAN, STRING, FLOAT, DOUBLE,
BYTE BUFFER.

8.5.5 Class FEnumerationType

This class represents an enumeration type. The enumeration will contain a list of enumera-
tors. It can be derived from a base enumeration.
• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• List<FEnumerator (§8.5.6)> enumerators: The list of enumerators of this enumera-

tion.
• FEnumerationType (§8.5.5) base (optional): The base type of this enumeration. Will

be null if this enumeration is not derived from any other enumeration.

8.5.6 Class FEnumerator

• EString name: The name of this element. Inherited from base class FModelElement.

8.5 API for Franca types 81

• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this
element (if any). Inherited from base class FModelElement.
• EString value (optional): The value of this enumerator. As the value definition for

an enumerator is optional, value might be null.

8.5.7 Class FTypeDef

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FTypeRef (§8.5.3) actualType: The actual type for this type alias.

8.5.8 Class FCompoundType (abstract)

This class represents all kinds of compound types in Franca, i.e., struct and union types. A
compound type has a list of fields; each field is itself specified by its type. Thus, nested
compounds can be created. The ordering of fields in the compound is relevant. E.g.,
serialization code generated from a Franca interface must take into account the order of
the fields.

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• List<FField (§8.5.11)> elements: The elements (aka fields) of this compound type.

8.5.9 Class FUnionType

This class represents a union type in Franca. See its base class FCompoundType (§8.5.8)
for a detailed description.

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• List<FField (§8.5.11)> elements: The elements (aka fields) of this compound type.

Inherited from base class FCompoundType (§8.5.8).
• FUnionType (§8.5.9) base (optional): The base union from which this union inherits.

Franca supports single inheritance for unions.

8.5.10 Class FStructType

This class represents a struct type in Franca. See its base class FCompoundType (§8.5.8)
for a detailed description.

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• List<FField (§8.5.11)> elements: The elements (aka fields) of this compound type.

Inherited from base class FCompoundType (§8.5.8).
• FStructType (§8.5.10) base (optional): The base struct from which this struct inherits.

Franca supports single inheritance for structs. Structs which inherit from a base
struct cannot be polymorphic.
• EBoolean polymorphic (optional): Indicates if struct is the root of a polymorphic

type hierarchy. Structs may be either extended from a base struct or polymorphic
(or none of both).

82 Chapter 8. Franca Model API

8.5.11 Class FField

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FTypeRef (§8.5.3) type: The actual type of this typed element. The type might be

predefined or user-defined. Inherited from base class FTypedElement (§8.6.13).
• EString array (optional): If the typed element is an implicit array definition, this

property will be set to a string (e.g., the string ’[]’). If the typed element is a single
value (not an array), this property will be null. Do not rely on the actual value of
the string. Inherited from base class FTypedElement (§8.6.13).

8.5.12 Class FArrayType

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FTypeRef (§8.5.3) elementType: The type of this array’s elements.

8.6 API for Franca contracts

This section describes all API classes needed for Franca interface contracts. The root class
of the interface contract subtree is FContract. See the section Contracts (§5.6) in the
Franca User Guide for detailed information about contracts.

8.6.1 Class FContract

The contract for a Franca interface. The contract specifies the dynamic behaviour of the
interface. It consists of a PSM (short for: Protocol State Machine) and an optional set of
state variables.
• FStateGraph (§8.6.3) stateGraph: The protocol state machine for this contract. It

might use the state variables specified by the variables property.
• List<FDeclaration (§8.6.2)> variables: The declarations of all state variables used

by the protocol state machine of this contract.

8.6.2 Class FDeclaration

This class represents the definition of a state variable as part of a Franca interface contract.
Note that the types available for the state variable definition are all types which are
accessible from this interface.
• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FTypeRef (§8.5.3) type: The actual type of this typed element. The type might be

predefined or user-defined. Inherited from base class FTypedElement (§8.6.13).
• EString array (optional): If the typed element is an implicit array definition, this

property will be set to a string (e.g., the string ’[]’). If the typed element is a single
value (not an array), this property will be null. Do not rely on the actual value of
the string. Inherited from base class FTypedElement (§8.6.13).

8.6.3 Class FStateGraph

A state graph specifying the interface’s dynamic behavior. The state graph is flat (i.e.,
non-hierarchical) and consists of a set of states, which are linked by transitions. One of the

8.6 API for Franca contracts 83

states in the set is specified as initial. I.e., this is the initial state of the interface.

• FState (§8.6.4) initial : This property references the initial state for the protocol state
machine.
• List<FState (§8.6.4)> states: The list of states comprising this protocol state machine.

It contains the intial state.

8.6.4 Class FState

This class represents a single state as member of a FStateGraph (§8.6.3). The state contains
a list of its outgoing transitions. The target state of each transition is contained in that
transition.

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• List<FTransition (§8.6.5)> transitions: The list of outgoing transitions for this state.

These transitions lead to the successor states of this state.

8.6.5 Class FTransition

This class represents a single transition as part of a FStateGraph (§8.6.3). The transition
references its target state by property to. It doesn’t reference its source state; instead, the
source state contains the list of its outgoing transitions. The transition defines a trigger,
which specifies some event which can occur during runtime. It also defines a guard condition.
If the trigger event occurs, the guard condition will be checked (if any). Depending on this
check the transition will be executed. Finally, a transition has some action, which will be
executed each time when the transition fires.

• FTrigger (§8.6.18) trigger : The trigger which fires this transition.
• FGuard (§8.6.17) guard (optional): An optional guard for this transition.
• FState (§8.6.4) to: The target state of this transition.
• FExpression (§8.6.6) action (optional): An optional action which is executed each

time this transition fires.

8.6.6 Class FExpression (abstract)

This is the common base class for all expressions of the Franca contract action language.
The FExpression (§8.6.6) class will never be instantiated.

8.6.7 Class FBinaryOperation

• FExpression (§8.6.6) left : The left operand of the binary operation.
• EString op: The operator of this binary operation (e.g., ’||’, ’+’, ’*’, ’<’, and many

more). Consider the FrancaIDL.xtext grammar definition for an overview of all binary
operators supported by Franca contract action language.
• FExpression (§8.6.6) right : The right operand of the binary operation.

8.6.8 Class FConstant (abstract)

This is the common base class for all kinds of constants in the Franca contract action
language. The most important types are integers, booleans and strings.

8.6.9 Class FStringConstant

This class represents strings constants in the Franca contract action language.

• EString val : The value of this string constant (an actual string).

84 Chapter 8. Franca Model API

8.6.10 Class FBooleanConstant

This class represents boolean constants in the Franca contract action language.
• EBoolean val : The value of this boolean constant (an actual boolean).

8.6.11 Class FIntegerConstant

This class represents integer constants in the Franca contract action language.
• EInt val : The value of this integer constant (an actual integer).

8.6.12 Class FTypedElementRef

This class is a reference to some FTypedElement (§8.6.13). If the referenced element is
no compound type (i.e., struct or union), only the element property will be used. The
target and field properties will be null. If a field of a compound type is referenced, the field
property will point to the FField (§8.5.11) object. If the compound type is nested, the
target property will reference the next outer level (which is itself a compound referenced
by a FTypedElementRef (§8.6.12). This might be chained in order to specify a reference
to a deeply nested compound element.
• FTypedElement (§8.6.13) element (optional): The typed element which is actually

referenced by this object.
• FTypedElementRef (§8.6.12) target (optional): For nested compound types, this

property references the next outer level. Otherwise, it is null.
• FField (§8.5.11) field (optional): Specifies the field of a compound type.

8.6.13 Class FTypedElement (abstract)

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FTypeRef (§8.5.3) type: The actual type of this typed element. The type might be

predefined or user-defined.
• EString array (optional): If the typed element is an implicit array definition, this

property will be set to a string (e.g., the string ’[]’). If the typed element is a single
value (not an array), this property will be null. Do not rely on the actual value of
the string.

8.6.14 Class FVariable

• EString name: The name of this element. Inherited from base class FModelElement.
• FAnnotationBlock (§8.7.1) comment (optional): The structured comment for this

element (if any). Inherited from base class FModelElement.
• FTypeRef (§8.5.3) type: The actual type of this typed element. The type might be

predefined or user-defined. Inherited from base class FTypedElement (§8.6.13).
• EString array (optional): If the typed element is an implicit array definition, this

property will be set to a string (e.g., the string ’[]’). If the typed element is a single
value (not an array), this property will be null. Do not rely on the actual value of
the string. Inherited from base class FTypedElement (§8.6.13).

8.6.15 Class FAssignment

• FDeclaration (§8.6.2) lhs: The left-hand side of this assignment. It references the
state variable which should be set by specifying its declaration.
• FExpression (§8.6.6) rhs: The right-hand side of an assignment. This may be an

arbitrary expression of the Franca contract action language.

8.7 API for Franca structured comments 85

8.6.16 Class FBlockExpression

• List<FExpression (§8.6.6)> expressions: The sequence of expressions represented by
this block. This is a composite pattern used to specify a tree of expressions.

8.6.17 Class FGuard

• FExpression (§8.6.6) condition: The boolean condition of this transition guard.

8.6.18 Class FTrigger

• FEventOnIf (§8.6.19) event : The event which will trigger this transition.

8.6.19 Class FEventOnIf

This class represents a communication event, which basically corresponds to a message on
the interface. Exactly one of its properties should be set, all other should be zero.
• FMethod (§8.4.6) call (optional): If this property is not null, this event represents

the calling of a Franca method by a client.
• FMethod (§8.4.6) respond (optional): If this property is not null, this event represents

the response of a Franca method by the server.
• FBroadcast (§8.4.4) signal (optional): If this property is not null, this event represents

the sending of a Franca broadcast by the server.
• FAttribute (§8.4.7) set (optional): If this property is not null, this event represents

the setting of a Franca attribute.
• FAttribute (§8.4.7) update (optional): If this property is not null, this event represents

the update action of a Franca attribute.

8.7 API for Franca structured comments

This section describes the API classes representing structured comments. Note that it is
a special feature of Franca that comments are available at all in the model. This is not
the case for unstructured comments, which basically will be removed by the parser when
creating the abstract syntax tree. See the section Structured comments (§5.7.2) in the
Franca User Guide for detailed information about structured comments.

8.7.1 Class FAnnotationBlock

This class represents a structured comment. It is used by many of the elements of the
Franca IDL model. A structured comment consists of a list of elements with one tagged
comment each.
• List<FAnnotation (§8.7.2)> elements: The elements of this annotation block. Each

element represents one tagged comment.

8.7.2 Class FAnnotation

• FAnnotationType type (optional): The tag of this comment (i.e., the type of this
annotation).
• EString comment (optional): The actual comment as part of an FAnnotation.

8.7.3 Enum FAnnotationType

This enum represents the type of a structured comment (i.e., the tag starting with a ’@’).
This enum consists of the following literals: DESCRIPTION, AUTHOR, EXPER-

IMENTAL, DEPRECATED, SEE, PARAM, HIGH VOLUME, HIGH FREQUENCY,
SOURCE URI, SOURCE ALIAS, DETAILS.

9. Building generators with Franca

When a company or R&D department decides to model its interfaces with Franca IDL
then typically the interface definitions will be utilized by downstream tools, mostly by
generators creating code or documentation from these interfaces. This chapter gives an
introduction how generators can be implemented which produce code and other artifacts
from Franca IDL models.

9.1 Introduction

This introductory section describes the basic approach and some design decisions how to
build generators based on the Franca model API.

9.1.1 Basic approach

A typical approach to implement generators for Franca includes the following steps:

1. Load a Franca IDL file (with suffix .fidl) from file system. Result: a Franca model in
main memory.

2. Generate code from the Franca model. Result: some text strings containing the
generation output.

3. Save the generation output to one or more files on the file system.

These steps will be described in more detail below.

9.1.2 Which language can be used?

The loading step will result in an underlying Franca model which is the base for the
generator. This model provides a Java API (§8) generated by the Eclipse Modeling
Framework (EMF).

Thus, Java is a good choice for the generator implementation. However, there are other
languages available which operate on the Java VM or which translate to Java: Groovy, Scala
and Xtend are some examples. All those languages can be used to implement generators
for Franca.

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

88 Chapter 9. Building generators with Franca

For developers already used to Java we recommend using Xtend for this task. Xtend
offers a seamless integration with Java allowing the generator being implemented as a
proper mix of Java (where necessary) and Xtend. We fill focus on Xtend in this and later
chapters; the examples being shipped with Franca are using Xtend as well.

9.1.3 Tool integration

There are various ways to integrate a generator into your toolchain. Here are some examples:

• Generator as JUnit test case. Usually, this is the first step when implementing a
new generator. In this case, the generator runs on a separate Java VM without an
instance of the Eclipse IDE.
• Standalone generator. The generator is packed into a jar file and called by a Java

main class which offers command-line arguments for configuring the generator. Also
in this case, the generator runs on a separate Java VM without an instance of the
Eclipse IDE. A standalone generator can also be integrated into some build process,
e.g. to be part of a continuous integration build.
• Generator as Eclipse action. The generator is embedded into an Action class which

implements org.eclipse.ui.IActionDelegate. Thus, the generator can be triggered from
the Eclipse IDE, e.g. by selecting a proper context menu item.

As this chapter puts its focus on the actual generation step, we only describe the JUnit-based
solution here.

9.1.4 Loading a Franca IDL file

Loading a Franca IDL model file (with extension fidl) from the file system is a standard
task. It is supported by the Franca Framework, here is a Java example as part of a JUnit
test:

import static org.junit.Assert.∗;
import org.franca.core.dsl.FrancaIDLHelpers;
import org.franca.core.franca.FModel;
import org.junit.Test;

public class MyTest {
@Test
public void loadModel() {

FModel fmodel = FrancaIDLHelpers.instance().loadModel(”example.fidl”);
assertNotNull(fmodel);

// ... traverse model here
}

}

The FrancaIDLHelpers singleton class provides a convenient loadModel() function which
initializes the infrastructure needed for Franca and loads the Franca IDL file afterwards. It
might use a relative or absolute path. If the model imports other files, those will be loaded,
too. All cross references will be resolved.

The function loadModel() returns an object of type FModel (§8.4.1) (follow the link
to the corresponding section of the Franca Model API (§8) documentation). See the next
section for how to traverse the model and generate some artifacts from it.

http://www.xtend-lang.org

9.2 Traversing Franca models 89

9.2 Traversing Franca models

9.2.1 Starting with FModel

A Franca IDL model (represented by an object of type FModel (§8.4.1)) might contain
several type collections FTypeCollection (§8.4.2) and interfaces FInterface (§8.4.3). These
can be accessed using the generated FModel API, the following Xtend code example shows
how to access them.

class ExampleGenerator {
def generateFromModel (FModel fmodel) {

for(tc : fmodel.typeCollections)
tc.generateTypes

for(i : fmodel.interfaces)
i.generateInterface

}

def private generateTypes (FTypeCollection types) {
// access properties of FTypeCollection, e.g. types.name

}

def private generateInterface (FInterface api) {
// access properties of FInterface, e.g. api.name or api.methods

}

In the example, there is only a stub implementation for the functions generateTypes()
and generateInterface().

9.2.2 Accessing an FInterface

The following Xtend example code shows how to traverse all methods (i.e., FMethod (§8.4.6)
members) of a Franca interface FInterface (§8.4.3). It generates a C++ class with member
function declarations for all Franca methods.

def generateInterface (FInterface api) ’’’
class «api.classname»
{
public:

// methods
«FOR m : api.methods»
«m.generateMethodDecl»
«ENDFOR»

};
’’’

This function uses a template expression (surrounded by triple single quotes), which is
a very useful feature of Xtend when it comes to textual generators. Template expressions
can span multiple lines and contain expressions which are evaluated and their string
representation being inserted at that position.

9.2.3 Benefits due to Xtend features

Template expressions are one useful feature of Xtend which supports the implementation
of generators very nicely. Here are some more Xtend features which are very handy for
generator developers:
• The implicit it-variable allows to reduce syntactic sugar, especially in the case of lots

of small methods as usually found in generator code.

90 Chapter 9. Building generators with Franca

• The switch-statement for classes allows to implement type-safe dispatching without
instanceof -cascades and downcasts.
• Lambda expressions are very useful for the traversal and filtering of object graphs (as

in the Franca model).
• Extension methods allow to split the generator functionality into a set of loosely

coupled classes. This is even more valuable if used in conjunction with dependency
injection based on com.google.inject.Inject.
• Dispatch methods introduce a polymorphic behaviour, which is handy for dispatching

generate()-calls to various subclasses in a class hierarchy (e.g., look at FType (§8.5.1)
and its subclasses.

There are some more nice features of Xtend which help in implementing generators. See
the documentation on Xtend for more details on this. It is available online and as printable
pdf.

9.2.4 Next steps

In the following, the Franca IDL model has to be traversed further, extracting information
from the model and generating code from it. The typical way of implementing this is top-
down, starting with FModel (§8.4.1), FTypeCollection (§8.4.2) and FInterface (§8.4.3), and
continuing with type definitions from type collections and interfaces (e.g., FType (§8.5.1) /
FTypeRef (§8.5.3), FStructType (§8.5.10), FArrayType (§8.5.12) and many more). Finally
output is generated for the elements of interfaces (e.g., FAttribute (§8.4.7), FMethod (§8.4.6),
FBroadcast (§8.4.4) and FArgument (§8.4.5)).

There are some special features in the Franca model API which should taken care of:

• inheritance for FInterface (§8.4.3), FStructType (§8.5.10), FUnionType (§8.5.9) and
FEnumerationType (§8.5.5) (see base-property for these classes)
• implicit arrays, which is relevant for all subclasses of FTypedElement (§8.6.13) (via

its array-property)
• error enumerators for methods, available in two variants (see FMethod (§8.4.6))

We will not go into more detail here, as there is a detailed chapter on the Franca Model
API (§8) in this User Guide.

9.2.5 Contract section of FInterface

Each Franca interface might contain a definition of a contract, specifying the dynamic
behavior of the interface. The corresponding classes of the Franca model API are described
in the User Guide section API for Franca contracts (§8.6).

As the contract is specifying the behavior of the interface, it should not contain any
application logic. Thus, it should not be necessary to access this part of the model when
generating target code. However, in order to use the specified contract as part of a runtime
verification monitor or for an offline trace analyser, it will be needed to traverse this part
of the model and generate some artifacts from it.

Section Contracts (§5.6) describes the notion of contracts and their syntax and usage
in more detail.

9.3 Accessing Franca deployment models

For the Franca IDL model there is the Franca Model API (§8) which allows programmatic
access to IDL models. This is also the recommend way for building generators from Franca
IDL. For Franca deployment models (§6), there is also an API generated by the EMF
infrastructure. However, we discourage using this API because deployment models are

http://www.xtend-lang.org

9.3 Accessing Franca deployment models 91

far more generic than IDL models and contain many implicit assumptions and logical
constraints. In order to work with deployment models programmatically, PropertyAccessor
classes should be used.

As this is not specific to building generators, but will be needed also for model-to-model
transformations and other Franca IDL downstream processing tasks, please refer to common
section Support for accessing deployment properties (§6.4) to get the details of accessing
Franca deployment models from your generator implementation.

10. Building transformations to/from Franca

One particular sweet spot for Franca is its ability to integrate software systems by supporting
transformations from other interface definition languages to Franca IDL. This chapter
describes some concepts around this topic and details how those transformations can be
designed and implemented.

10.1 Introduction

Software interfaces which are modeled using some other technology than Franca can be
mapped to Franca by providing a model-to-model transformation. This can be done in two
directions:

• from Franca IDL to another IDL
• from another IDL to Franca IDL

A Franca connector is a Java class which contains both transformations for a given IDL.
Usually, the other IDL will be modeled based on some meta-model. In many environments
an ecore-model of the IDL is available (which is a meta-model in the format given by the
Eclipse Modeling Framework, short: EMF). If the other IDL is modeled using some XML-
based format, an XML schema or a DTD is available, which can be converted automatically
to an ecore-model.

Based on the ecore-model, the transformations can be implemented using any technology
which can access either the models directly or uses the Java API of the ecore-model as
generated by EMF. Options are:

• use plain Java or another JVM-based language
• use Xtend (maybe mixed with Java), which will be transformed into Java automati-

cally
• use a declarative M2M framework, e.g. ATL

In the following we recommend using Xtend for this task. It has several nice features which
especially support the implementation of imperative model-to-model transformations.

http://www.eclipse.org/modeling/emf/
http://www.xtend-lang.org
http://www.xtend-lang.org

94 Chapter 10. Building transformations to/from Franca

10.2 Transforming Franca to other models

10.2.1 Plain transformations of Franca IDL

Implementing a plain transformation from Franca IDL models to other models is very
similar to the task of building a generator for Franca IDL. In both cases, a Franca model
has to be traversed; the extracted information is used to produce a resulting artifact (either
generated code or another model). See the chapter on Building generators with Franca (§9)
for more insights about this topic.

Xtend has proven to be a powerful and expressive language for traversing a model
and constructing another model from it. There are a couple of features supporting model
traversal (§9.2.3). Another Xtend feature especially for constructing models as graphs of
objects are create-functions. These provide a cache mechanism to avoid constructing the
identical object twice. See the Xtend reference documentation for details. An example on
how to use create-functions can be found below (§10.3.1).

Example: The plugin org.franca.connectors.dbus is part of the Franca release. It
contains the transformation from Franca to DBus introspection files implemented in Xtend.
This can serve as an example for implementing this kind of transformation. You will find
it in Xtend file Franca2DBusTransformation.xtend in package org.franca.connectors.dbus.

10.2.2 Transforming Franca deployment models

If a model has to be created from Franca deployment models (including a reference to an
Franca IDL model), two models have to be traversed simultaneously. Again, this is a topic
which is very similar to generating code from Franca deployment models.

For the Franca IDL model there is the Franca Model API (§8) which allows programmatic
access to IDL models. This is also the recommend way for building transformations from
Franca IDL. For Franca deployment models (§6), there is also an API generated by the
EMF infrastructure. However, we discourage using this API because deployment models
are far more generic than IDL models and contain many implicit assumptions and logical
constraints. In order to work with deployment models programmatically, PropertyAccessor
classes should be used.

As this is not specific to building model-to-model transformations, but will be needed
also for building generators and other Franca IDL downstream processing tasks, please
refer to common section Support for accessing deployment properties (§6.4) to get the
details of accessing Franca deployment models from your transformation implementation.

10.3 Transforming other models to Franca

10.3.1 Plain transformation to Franca IDL

The typical structure of a transformation of another model into Franca IDL looks like the
following:

1. load the source model from file system (or a different source)
2. traverse the source model starting from the root (this is typically a top-down traversal)
3. extract information from the source model elements and create a Franca IDL model
4. save the resulting Franca IDL model or use it for further processing

During the third step elements of the Franca IDL model have to be created and filled
with data. The Java class FrancaFactory has to be used for element creation. See section
FrancaFactory and FrancaPackage (§8.2.2) for more information on how to do this.

In the context of an Xtend implementation of a transformation, create-functions can
be used to create the proper objects and initialize them. Here is an example showing a
create function for FInterface (§8.4.3).

http://www.xtend-lang.org

10.3 Transforming other models to Franca 95

// this function will return an object of type FInterface
def create FrancaFactory::eINSTANCE.createFInterface transform(InterfaceType src) {

// interface name is just a string and doesn’t have to be transformed
name = src.name

// transform interface methods one−by−one
methods.addAll(src.method.map [transformMethod])

// transform further elements of ’src’ and store them in the new FInterface object
// ...

// implicit return parameter ’it’ (the new FInterface object)
}

InterfaceType is the class corresponding to FInterface from the source model of the
transformation (most likely another IDL). When the transform()-method is being called, it
will first check if the source element has been transformed before. Only if it hasn’t been
transformed yet, a new FInterface (§8.4.3) object will be created. The implicit variable it
has to be used to refer to this object. In the assignment name = src.name the left-hand
side is a property of FInterface (§8.4.3), this is a short-hand for it.name.

The second line calls uses lambda functions (another handy Xtend feature) in order to
call transformMethod() for each member of the collection src.method and store the resulting
objects (of type FMethod (§8.4.6)) into the list it.methods. This is another pattern typically
used in model transformations implemented with Xtend.

Detailed example: The plugin org.franca.connectors.dbus is part of the Franca re-
lease. It contains the transformation from DBus introspection files to Franca IDL im-
plemented in Xtend. This can serve as an example for implementing this kind of trans-
formation. You will find it in Xtend file DBus2FrancaTransformation.xtend in package
org.franca.connectors.dbus.

10.3.2 Creating additional deployment models

It sometimes is necessary to transform a third-party model into two resulting models: a
Franca IDL model and a corresponding Franca deployment model. The first part of this
transformation has been covered by the previous section. In order to create the deployment
model, the helper class DeployModelBuilder should be used. It provides helper functions
for setting deployment properties according to a given deployment specification.

In Xtend code, the DeployModelBuilder can be imported as a static extension:

import static extension org.franca.deploymodel.core.DeployModelBuilder.∗
Here is an Xtend code example showing the basic idea of creating IDL model and

deployment model at the same time (the types of the variables could be omitted and are
here for clarity only):

// load deployment model containing specification(s) and get the first one
var fdSpecifications = FDModelHelper::instance.loadModel(”deployspec.fdepl”)
var FDSpecification fdSpec = fdSpecifications.specifications.get(0)

// create Franca IDL model and deployment model
var FModel fModel = FrancaFactory::eINSTANCE.createFModel
var FDModel fdModel = FDeployFactory::eINSTANCE.createFDModel

// prepare DeployModelBuilder

http://www.xtend-lang.org

96 Chapter 10. Building transformations to/from Franca

// transform all interfaces
for(src : sourceModel.interfaces) {

var FInterface result = src.transform

// create deployment model element and add it to deployment model
var FDInterface fdInterface = FDeployFactory::eINSTANCE.createFDInterface
fdModel.deployments.add(fdInterface)

// link deployment interface to IDL interface
fdInterface.target = result

// check properties in the source model and add them to deployment model
if (src.checkSomeProperty()) {

// set a deployment property (this uses DeployModelBuilder)
fdInterface.setProperty(fdSpec, ”SomeProperty”, true)

}
// ... check more properties and set them, if necessary

}

Note that the setProperty() function is defined as part of DeployModelBuilder and is
called for a deployment model element (here: fdInterface). The following parameters are:
the underlying deployment specification (here: fdSpec), the actual name of the property
(here: ”SomeProperty”), and the new value for the property. If the new value for the property
is equal to the default as defined in the deployment specification, DeployModelBuilder will
not set the property.

See the Javadoc documentation of org.franca.deploymodel.core.DeployModelBuilder to under-
stand all kinds of functions it offers.

Depending on the complexity of the source model, it might be tedious to create the
Franca IDL model and the deployment model at the same time. The difficult detail is
to set the target attribute for all elements of the deployment model (see example above).
Xtend extension methods and Google’s dependency injection framework might help here
by allowing to separate the Franca IDL model construction from the deployment model
construction (see com.google.inject and the @Inject annotation for Java and Xtend).

There is no example for this kind of transformation in the Franca release yet. This will
be added in a future version.

11. Franca extensions

11.1 Additional validators

In some environments using Franca, it is required to impose additional restrictions on
the contents of IDL or deployment files. E.g., there might be company-specific naming
conventions which should also be applied to names of Franca data types, interface names
or deployment properties. This can be enforced by implementing an external validator
which checks the additional specific restrictions.

For each additional validation rule in the validator, it can be chosen if a rule violation
should be classified as info, warning or error.

The following sections describe how to implement validators and register them. In the
Franca repository, there is an example project which provides running examples of IDL
and deployment validators (project org.franca.examples.validators in the examples folder).

11.1.1 Adding a validator for Franca IDL

A specific validator for Franca IDL models is an implementation of the Java interface
IFrancaExternalValidator. The actual validation rules are implemented by overriding the
method validateModel. The method arguments provide access to the model which should
be validated and to a message acceptor which can be used for issuing warnings and errors.

The following example shows an external validator which ensures that Franca method
names do not contain underscores.

public class MethodNameValidator implements IFrancaExternalValidator {
@Override
public void validateModel(FModel model, ValidationMessageAcceptor messageAcceptor) {

for(FInterface interface : model.getInterfaces()) {
for(FMethod method : interface.getMethods()) {

if (method.getName().contains(” ”)) {
messageAcceptor.acceptError(

”Method names must not contain underscores!”, method,
FrancaPackage.Literals.FMODEL ELEMENT NAME,
ValidationMessageAcceptor.INSIGNIFICANT INDEX,

98 Chapter 11. Franca extensions

null);
}

}
}

}
}

The API of ValidationMessageAcceptor provides methods for issuing info, warning and
error messages, depending on the severity of the violation.

In order to register the new IDL validator class, it has to be configured as extension for
the extension point org.franca.core.dsl.francaValidator. This can be done either by using
the Extensions dialog in the Eclipse IDE or by manually editing the plugin.xml file of
the project where the IFrancaExternalValidator implementation is located. The following
excerpt from plugin.xml shows how to register the MethodNameValidator from the previous
example.

<plugin>
<extension point=”org.franca.core.dsl.francaValidator”>

<validator
class=”my.specific.validators.fidl.MethodNameValidator”
mode=”FAST”
name=”Method name validator”>

</validator>
</extension>

</plugin>

The property class has to define the fully qualified class name of the validator class.
This is a usual pattern for registration of Eclipse extensions. The name property defines
some descriptive text for the extension. Finally, the mode property specifies the check
mode:

• FAST or NORMAL: check will be executed each time the Franca IDL file is saved
• EXPENSIVE: check is triggered manually from the context menu of Franca files

The new validation checks will then be executed automatically by the Eclipse IDE. However,
if Franca models are handled by standalone tools (without the Eclipse IDE), there is no
extension point infrastructure and the additional validator will not be registered. Hence, for
standalone tools, the registration of additional validators has to be done programmatically.
The class ExternalValidatorRegistry in the package org.franca.core.dsl.validation provides
static methods for doing this, e.g. the method ExternalValidatorRegistry.addValidator().

Note that the ExternalValidatorRegistry approach should only be used in standalone
mode. In the Eclipse IDE the extension point approach has to be used, in order to avoid
coupling and prevent initialization problems due to the on-demand loading of plug-ins.

11.1.2 Adding a validator for deployment models

Adding a validator for Franca deployment models is similar as for IDL model validators.
The following example shows a validator which ensures that the names of deployment
specifications are not shorter than a hard-coded minimal length. Note that the interface
which has to be implemented for new deployment validators is a different interface than in
the IDL case.

public class SpecNameValidator implements IFDeployExternalValidator {

static final int SPEC NAME MINIMUM LENGTH = 5;

11.2 Providing deployment specifications 99

@Override
public void validateModel(FDModel model, ValidationMessageAcceptor messageAcceptor) {

for(FDSpecification spec : model.getSpecifications()) {
String name = spec.getName();
if (name.length() < SPEC NAME MINIMUM LENGTH) {

messageAcceptor.acceptError(
”The name of the specification is too short (minimum is ” +

SPEC NAME MINIMUM LENGTH + ” characters)!”, spec,
FDeployPackage.Literals.FD SPECIFICATION NAME,
ValidationMessageAcceptor.INSIGNIFICANT INDEX,
null);

}
}

}
}

The details of implementing validation rules are quite similar. Again, different kinds of
messages can be issued based on the severity of the violation. As models can contain both
deployment specifications and deployment definitions, specific deployment validation rules
might check properties of both specifications and definitions as well.

In order to register the new deployment validator class, it has to be configured as
extension for the extension point org.franca.deploymodel.dsl.deploymentValidator. This can
be done either by using the Extensions dialog in the Eclipse IDE or by manually editing
the plugin.xml file of the project where the IFDeployExternalValidator implementation is
located. The following excerpt from plugin.xml shows how to register the SpecNameValidator
from the previous example.

<plugin>
<extension point=”org.franca.deploymodel.dsl.deploymentValidator”>

<validator
class=”org.franca.examples.validators.fdepl.SpecNameValidator”
mode=”FAST”
name=”Specification name validator”>

</validator>
</extension>

</plugin>

The registration in the standalone case (without the Eclipse IDE) is done using Ex-
ternalValidatorRegistry in the package org.franca.deploymodel.dsl.validation. It provides
static methods for registering external validators, e.g., the method ExternalValidatorReg-
istry.addValidator(). Note that two different registration classes for IDL and deployment
validators are used. They share a common name and common method names, but are
located in different packages.

Again, note that the ExternalValidatorRegistry approach should only be used in stan-
dalone mode. In the Eclipse IDE the extension point approach has to be used, in order
to avoid coupling and prevent initialization problems due to the on-demand loading of
plug-ins.

11.2 Providing deployment specifications

Some downstream tools (e.g., code generators for Franca models) might use Franca de-
ployment models as additional input format. These tools will usually bring their own

100 Chapter 11. Franca extensions

deployment specification which defines the deployment properties needed as additional
input by the tool.

Usually these tool are packaged as Eclipse plug-ins. The deployment specification file
then is just another resource in the plug-in jar. In order to allow users to refer to the
deployment specification without knowing its exact URI, Franca provides an extension
point which can be used by the tool’s plug-in to register the deployment specification with
an abstract (logical) name. Franca will then take care via scoping to allow importing this
deployment specification.

Here is an example of using the deploySpecProvider extension point in order to register
the deployment specification from file PlatformDeploySpec.fdepl with the logical name
CoolSpec:

<plugin>
<extension point=”org.franca.deploymodel.dsl.deploySpecProvider”>

<model
FDSpecification=”org.example.spec.PlatformDeploySpec”
alias=”CoolSpec”
resource=”model/platform/PlatformDeploySpec.fdepl”>

</model>
</extension>

</plugin>

The registration of the extension can be done either by using the Extensions dialog in
the Eclipse IDE or by manually editing the plugin.xml file of the plug-in which wants to
register the deployment specification.

This deployment specification can then be imported in any deployment model by the
following import statement:

import CoolSpec

specification MySpec extends org.example.spec.PlatformDeploySpec {
// ...

}

define org.example.spec.PlatformDeploySpec for interface SomeAPI {
// ...

}

In the example, the deployment specification imported by its alias is used as a base
specification for MySpec and for a deployment definition.

12. List of External Links

https://github.com/franca/franca/wiki/Franca-Quick-Install-Guide

http://www.freedesktop.org/wiki/Software/dbus

http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/xtext

http://kbirken.github.io/dbus-emf-model/releases/

http://www.xtend-lang.org

http://5ise.quanxinquanyi.de/2012/01/13/xtext-end-user-domain-experts-cheat-sheet/

https://github.com/kbirken/dbus-emf-model

https://github.com/franca/franca/wiki/Franca-Quick-Install-Guide
http://www.freedesktop.org/wiki/Software/dbus
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/xtext
http://kbirken.github.io/dbus-emf-model/releases/
http://www.xtend-lang.org
http://5ise.quanxinquanyi.de/2012/01/13/xtext-end-user-domain-experts-cheat-sheet/
https://github.com/kbirken/dbus-emf-model

	Part I — Part One
	1 Introduction
	1.1 Franca framework architecture
	1.2 Franca IDL
	1.3 Franca Tooling

	2 Getting Started
	2.1 Install Eclipse-based Franca tooling
	2.2 Import example project
	2.3 Contents of example project
	2.4 Create new Franca interface
	2.5 Develop your own code generator

	3 Franca Concepts
	3.1 Franca Core Model and IDL
	3.2 Franca Transformation Framework
	3.3 Franca Generator Framework
	3.4 Franca Deployment Models
	3.5 Guidelines for adding new features to Franca IDL

	4 Franca Tools User's Guide
	4.1 Franca IDL Editor
	4.2 Franca Contract Viewer
	4.3 Franca IDL HTML Generator

	Part II — Part Two
	5 Franca IDL Reference
	5.1 Data types
	5.2 Constant definitions
	5.3 Expressions
	5.4 TypeCollection definition
	5.5 Interface definition
	5.6 Contracts
	5.7 Comments
	5.8 Fully qualified names, packages, and multiple files

	6 Franca Deployment Models
	6.1 Deployment model concepts
	6.2 Deployment specifications
	6.3 Deployment definitions
	6.4 Support for accessing deployment properties

	Part III — Part Three
	7 Franca connectors
	7.1 Franca support for D-Bus Introspection
	7.2 Franca support for OMG IDL
	7.3 Franca support for Google Protobuf

	Part IV — Part Four
	8 Franca Model API
	8.1 How can Franca models be accessed programmatically?
	8.2 Franca Model API Reference
	8.3 Utility classes for Franca model access
	8.4 API for Franca models, interfaces and type collections
	8.5 API for Franca types
	8.6 API for Franca contracts
	8.7 API for Franca structured comments

	9 Building generators with Franca
	9.1 Introduction
	9.2 Traversing Franca models
	9.3 Accessing Franca deployment models

	10 Building transformations to/from Franca
	10.1 Introduction
	10.2 Transforming Franca to other models
	10.3 Transforming other models to Franca

	11 Franca extensions
	11.1 Additional validators
	11.2 Providing deployment specifications

	12 List of External Links

